您当前的位置:首页 > 代数数论讲义 Hecke 2000年版 > 下载地址1
代数数论讲义 Hecke 2000年版
- 名 称:代数数论讲义 Hecke 2000年版 - 下载地址1
- 类 别:数学书籍
- 下载地址:[下载地址1]
- 提 取 码:
- 浏览次数:3
发表评论
加入收藏夹
错误报告
目录| 新闻评论(共有 0 条评论) |
资料介绍
代数数论讲义
作者:Hecke
出版时间: 2000年版
内容简介
Hecke was certainly one of the masters, and in fact, the study of Hecke Lseries and Hecke operators has permanently embedded his name in the fabric of number theory. It is a rare occurrence when a master writes a basic book,and Hecke's Lectures on the Theory of Algebraic Numbers has become a classic. To quote another master, Andre Weil: "To improve upon Hecke, in a treatment along classical lines of the theory of algebraic numbers, would be a futile and impossible task."此书为英文版!
目录
CHAPTERI
ElementsofRationalNumberTheory
1.Divisibility,GreatestCommonDivisors,Modules,Prime
Numbers,andtheFundamentalTheoremofNumberTheory
(Theorems1-5)
2.CongruencesandResidueClasses(Euler'sfunction(n).
Ferrnat'stheorem.Theorems6-9)
3.IntegralPolynomials,FunctionalCongruences,andDivisibility
modp(TheoremslO-13a)
4.CongruencesoftheFirstDegree(Theorems14-15)
CHAPTERII
AbelianGroups
5.TheGeneralGroupConceptandCalculationwithElements
ofaGroup(Theorems16-18)
6.SubgroupsandDivisionofaGroupbyaSubgroup(Order
ofelements.Theorems19-21)
7.AbelianGroupsandtheProductofTwoAbeliunGroups
(Theorems22-25)
8.BasisofanAbelianGroup(Thebasisnumberoragroup
belongingtoaprimenumber.Cyclicgroups.Theorems26-28)
9.CompositionofCosetsandtheFactorGroup(Theorem29)
10.CharactersofAbelianGroups(Thegroupofcharacters.
Determinationofallsubgroups.Theorems30-33)
11.InfiniteAbelianGroups(Finitebasisofsuchagroupand
basisforasubgroup.Theorems34-40)
CHAPTERIII
AbelianGroupsinRationalNumberTheory
12.GroupsofIntegersunderAdditionandMultiplication
(Theorem41)
13.StructureoftheGroupR(n)oftheResidueClassesmodn
RelativelyPrimeton(Primitivenumbersmodpandmodp2.
Theorems42-45)
14.PowerResidues(Binomialcongruences.Theorems46-47)
15.ResidueCharactersofNumbersmodn
16.QuadraticResidueCharactersmodn(Onthequadratic
reciprocitylaw)
CHAPTERIV
AlgebraofNumberFields
17.NumberFields,PolynomialsoverNumberFields,and
Irreducibility(Theorems48-49)
18.AlgebraicNumbersoverk(Theorems50-519
19.AlgebraicNumberFieldsoverk(Simultaneousad)unctionof
severalnumbers.Theconjugatenumbers.Theorems52-55)
20.GeneratingFieldElements,FundamentalSystems,and
SubfieldsofK(0)(Theorems56-59)
CHAPTERV
GeneralArithmeticofAlgebraicNumberFields
21.DefinitionofAlgebraicIntegers,Divisibility,andUnits
(Theorems60-63)
22.TheIntegersofaFieldasanAbelianGroup:Basisand
DiscriminantoftheField(Moduli.Theorem64)
23.FactorizationofIntegersinK():GreatestCommon
DivisorswhichDoNotBelongtotheField
24.DefinitionandBasicPropertiesofIdeals(Productofideals.
Primeideals.Twodefinitionsofdivisibility.Theorems65-69)
25.TheFundamentalTheoremofIdealTheory(Theorems70-72)
26.FirstApplicationsoftheFundamentalTheorem(Theorems73-75)
27.CongruencesandResidueClassesModuloIdealsandthe
GroupofResidueClassesunderAdditionandunder
Multiplication(Normofanideal.Fermat'stheoremforideal
theory.Theorems76-85)
28.PolynomialswithIntegralAlgebraicCoefficients(Contentof
polynomials.Theorems86-87)
29.FirstTypeofDecompositionLawsforRationalPrimes:
DecompositioninQuadraticFields(Theorems88-90)
30.SecondTypeofDecompositionTheoremforRationalPrimes:
DecompositionintheFieldK(e2xi/m)(Theorems91-92)
31.FractionalIdeals(Theorem93)
32.Minkowski'sTheoremonLinearForms(Theorems94-95)
33.IdealClasses,theClassGroup,andIdealNumbers
(Theorems96-98)
34.UnitsandanUpperBoundfortheNumberofFundamental
Units(Theorems99-100)
35.Dirichlet'sTheoremabouttheExactNumberofFundamental
Units(Theregulatorofthefield)
36.DifferentandDiscriminant(Numberrings.Theorems
101-105)
37.RelativeFieldsandRelationsbetweenIdealsinDifferentFields
(Theorem106J
38.RelativeNorms'ofNumbersandIdeals,RelativeDifferents,and
RelativeDiscriminants(Theprimefactorsoftherelative
different.Theorems107-115)
39.DecompositionLawsintheRelativeFieldsK()(Theorems
116-120)
CHAPTERVI
IntroductionofTranscendentalMethodsintothe
ArithmeticofNumberFields
40.TheDensityoftheIdealsinaClass(Theorem121)
41.TheDensityofIdealsandtheClassNumber(Thenumber
ofidealswithgivennorm.Theorem122)
42.TheDedekindZeta-Function(Dirichletseries.Dedekind's
zeta-functionanditsbehaviorats=1.Representationby
products.Theorems123-125)
43.TheDistributionofPrimeIdealsofDegree1,inParticularthe
RationalPrimesinArithmeticProgressions(TheDirichlet
serieswithresiduecharactersmodn.Degreeofthecyciotomic
fields.Theorems126-131)
CHAPTERVII
TheQuadraticNumberField
44.SummaryandtheSystemofIdealClasses(Numericalexamples)
45.TheConceptofStrictEquivalenceandtheStructureofthe
ClassGroup(Theorems132-134)
46.TheQuadraticReciprocityLawandaNewFormulationofthe
DecompositionLawsinQuadraticFields(Theorems135-137)
47.NormResiduesandtheGroupofNormsofNumbers
(Theorems138-141)
48.TheGroupofIdealNorms,theGroupofGenera,and
DeterminationoftheNumberofGenera(Theorems142-145)
49.TheZeta-Functionofk()andtheExistenceofPrimeswith
PrescribedQuadraticResidueCharacters(Theorems
146-147)
50.DeterminationoftheClassNumberofk()withoutUsaofthe
Zeta-Function(Theorem148)
54.DeterminationoftheClassNumberwiththeHelpofthe
Zeta-Function(Theorem149)
52.GaussSumsandtheFinalFormulafortheClassNumber
(Theorems150-152)
53.ConnectionbetweenIdealsink()andBinaryQuadratic
Forms(Theorems153-154)
CHAPTERVIII
TheLawofQuadraticReciprocityinArbitrary
NumberFields
54.QuadraticResidueCharactersandGaussSumsinArbitrary
NumberFields(Theorems155-156)
55.Theta-functionsandTheirFourierExpansions(Theorems
157-158)
56.ReciprocitybetweenGaussSumsinTotallyRealFields(The
transformationformulaofthethetafunctionandthereciprocity
betweenGaussstansfortotallyrealfields.Theorems159-161)
57.ReciprocitybetweenGaussSumsinArbitraryAlgebraic
NumberFields(Thetransformationformulaofthetheta
functionandthereciprocitybetweenGausssumsforarbitrary
fields.Theorems162-163)
58.TheDeterminationoftheSignofGaussSumsintheRational
NumberField(Theorem164)
59.TheQuadraticReciprocityLawandtheFirstPartofthe
SupplementaryTheorem(Theorems165-167)
60.RelativeQuadraticFieldsandApplicationstotheTheoryof
QuadraticResidues(Existenceofprimeidealswith
prescribedresiduecharacters.Theorems168-169)
61.NumberGroups,IdealGroups,andSingularPrimaryNumbers
61.NumberGroups,IdealGroups,andSingularPrimaryNumbers
62.TheExistenceoftheSingularPrimaryNumbersand
SupplementaryTheoremsfortheReciprocityLaw(Theorems
170-175)
63.APropertyofFieldDifferentsandtheHilbertClassFieldof
RelativeDegree2(Theorems176-179)
ChronologicalTable
References
作者:Hecke
出版时间: 2000年版
内容简介
Hecke was certainly one of the masters, and in fact, the study of Hecke Lseries and Hecke operators has permanently embedded his name in the fabric of number theory. It is a rare occurrence when a master writes a basic book,and Hecke's Lectures on the Theory of Algebraic Numbers has become a classic. To quote another master, Andre Weil: "To improve upon Hecke, in a treatment along classical lines of the theory of algebraic numbers, would be a futile and impossible task."此书为英文版!
目录
CHAPTERI
ElementsofRationalNumberTheory
1.Divisibility,GreatestCommonDivisors,Modules,Prime
Numbers,andtheFundamentalTheoremofNumberTheory
(Theorems1-5)
2.CongruencesandResidueClasses(Euler'sfunction(n).
Ferrnat'stheorem.Theorems6-9)
3.IntegralPolynomials,FunctionalCongruences,andDivisibility
modp(TheoremslO-13a)
4.CongruencesoftheFirstDegree(Theorems14-15)
CHAPTERII
AbelianGroups
5.TheGeneralGroupConceptandCalculationwithElements
ofaGroup(Theorems16-18)
6.SubgroupsandDivisionofaGroupbyaSubgroup(Order
ofelements.Theorems19-21)
7.AbelianGroupsandtheProductofTwoAbeliunGroups
(Theorems22-25)
8.BasisofanAbelianGroup(Thebasisnumberoragroup
belongingtoaprimenumber.Cyclicgroups.Theorems26-28)
9.CompositionofCosetsandtheFactorGroup(Theorem29)
10.CharactersofAbelianGroups(Thegroupofcharacters.
Determinationofallsubgroups.Theorems30-33)
11.InfiniteAbelianGroups(Finitebasisofsuchagroupand
basisforasubgroup.Theorems34-40)
CHAPTERIII
AbelianGroupsinRationalNumberTheory
12.GroupsofIntegersunderAdditionandMultiplication
(Theorem41)
13.StructureoftheGroupR(n)oftheResidueClassesmodn
RelativelyPrimeton(Primitivenumbersmodpandmodp2.
Theorems42-45)
14.PowerResidues(Binomialcongruences.Theorems46-47)
15.ResidueCharactersofNumbersmodn
16.QuadraticResidueCharactersmodn(Onthequadratic
reciprocitylaw)
CHAPTERIV
AlgebraofNumberFields
17.NumberFields,PolynomialsoverNumberFields,and
Irreducibility(Theorems48-49)
18.AlgebraicNumbersoverk(Theorems50-519
19.AlgebraicNumberFieldsoverk(Simultaneousad)unctionof
severalnumbers.Theconjugatenumbers.Theorems52-55)
20.GeneratingFieldElements,FundamentalSystems,and
SubfieldsofK(0)(Theorems56-59)
CHAPTERV
GeneralArithmeticofAlgebraicNumberFields
21.DefinitionofAlgebraicIntegers,Divisibility,andUnits
(Theorems60-63)
22.TheIntegersofaFieldasanAbelianGroup:Basisand
DiscriminantoftheField(Moduli.Theorem64)
23.FactorizationofIntegersinK():GreatestCommon
DivisorswhichDoNotBelongtotheField
24.DefinitionandBasicPropertiesofIdeals(Productofideals.
Primeideals.Twodefinitionsofdivisibility.Theorems65-69)
25.TheFundamentalTheoremofIdealTheory(Theorems70-72)
26.FirstApplicationsoftheFundamentalTheorem(Theorems73-75)
27.CongruencesandResidueClassesModuloIdealsandthe
GroupofResidueClassesunderAdditionandunder
Multiplication(Normofanideal.Fermat'stheoremforideal
theory.Theorems76-85)
28.PolynomialswithIntegralAlgebraicCoefficients(Contentof
polynomials.Theorems86-87)
29.FirstTypeofDecompositionLawsforRationalPrimes:
DecompositioninQuadraticFields(Theorems88-90)
30.SecondTypeofDecompositionTheoremforRationalPrimes:
DecompositionintheFieldK(e2xi/m)(Theorems91-92)
31.FractionalIdeals(Theorem93)
32.Minkowski'sTheoremonLinearForms(Theorems94-95)
33.IdealClasses,theClassGroup,andIdealNumbers
(Theorems96-98)
34.UnitsandanUpperBoundfortheNumberofFundamental
Units(Theorems99-100)
35.Dirichlet'sTheoremabouttheExactNumberofFundamental
Units(Theregulatorofthefield)
36.DifferentandDiscriminant(Numberrings.Theorems
101-105)
37.RelativeFieldsandRelationsbetweenIdealsinDifferentFields
(Theorem106J
38.RelativeNorms'ofNumbersandIdeals,RelativeDifferents,and
RelativeDiscriminants(Theprimefactorsoftherelative
different.Theorems107-115)
39.DecompositionLawsintheRelativeFieldsK()(Theorems
116-120)
CHAPTERVI
IntroductionofTranscendentalMethodsintothe
ArithmeticofNumberFields
40.TheDensityoftheIdealsinaClass(Theorem121)
41.TheDensityofIdealsandtheClassNumber(Thenumber
ofidealswithgivennorm.Theorem122)
42.TheDedekindZeta-Function(Dirichletseries.Dedekind's
zeta-functionanditsbehaviorats=1.Representationby
products.Theorems123-125)
43.TheDistributionofPrimeIdealsofDegree1,inParticularthe
RationalPrimesinArithmeticProgressions(TheDirichlet
serieswithresiduecharactersmodn.Degreeofthecyciotomic
fields.Theorems126-131)
CHAPTERVII
TheQuadraticNumberField
44.SummaryandtheSystemofIdealClasses(Numericalexamples)
45.TheConceptofStrictEquivalenceandtheStructureofthe
ClassGroup(Theorems132-134)
46.TheQuadraticReciprocityLawandaNewFormulationofthe
DecompositionLawsinQuadraticFields(Theorems135-137)
47.NormResiduesandtheGroupofNormsofNumbers
(Theorems138-141)
48.TheGroupofIdealNorms,theGroupofGenera,and
DeterminationoftheNumberofGenera(Theorems142-145)
49.TheZeta-Functionofk()andtheExistenceofPrimeswith
PrescribedQuadraticResidueCharacters(Theorems
146-147)
50.DeterminationoftheClassNumberofk()withoutUsaofthe
Zeta-Function(Theorem148)
54.DeterminationoftheClassNumberwiththeHelpofthe
Zeta-Function(Theorem149)
52.GaussSumsandtheFinalFormulafortheClassNumber
(Theorems150-152)
53.ConnectionbetweenIdealsink()andBinaryQuadratic
Forms(Theorems153-154)
CHAPTERVIII
TheLawofQuadraticReciprocityinArbitrary
NumberFields
54.QuadraticResidueCharactersandGaussSumsinArbitrary
NumberFields(Theorems155-156)
55.Theta-functionsandTheirFourierExpansions(Theorems
157-158)
56.ReciprocitybetweenGaussSumsinTotallyRealFields(The
transformationformulaofthethetafunctionandthereciprocity
betweenGaussstansfortotallyrealfields.Theorems159-161)
57.ReciprocitybetweenGaussSumsinArbitraryAlgebraic
NumberFields(Thetransformationformulaofthetheta
functionandthereciprocitybetweenGausssumsforarbitrary
fields.Theorems162-163)
58.TheDeterminationoftheSignofGaussSumsintheRational
NumberField(Theorem164)
59.TheQuadraticReciprocityLawandtheFirstPartofthe
SupplementaryTheorem(Theorems165-167)
60.RelativeQuadraticFieldsandApplicationstotheTheoryof
QuadraticResidues(Existenceofprimeidealswith
prescribedresiduecharacters.Theorems168-169)
61.NumberGroups,IdealGroups,andSingularPrimaryNumbers
61.NumberGroups,IdealGroups,andSingularPrimaryNumbers
62.TheExistenceoftheSingularPrimaryNumbersand
SupplementaryTheoremsfortheReciprocityLaw(Theorems
170-175)
63.APropertyofFieldDifferentsandtheHilbertClassFieldof
RelativeDegree2(Theorems176-179)
ChronologicalTable
References
相关推荐
- 数值计算方法:算法及其程序设计
- 育才学案 高中数学 必修3 人教版 马瑞娟分册主编;杨静丛书主编 2016年版
- 古今数学思想(第三册)2014年版
- 吴军数学通识讲义:原来数学可以这样用 吴军 2021年版
- 历届中国数学奥林匹克试题集 1986-2014 刘培杰主编 2014年版
- 数理逻辑:证明及其限度
- 托马斯微积分 第11版 上册 影印版 (美)MauriceD.Weir等著 2016年版
- 数学建模算法与应用 第2版 司守奎,孙兆亮主编;孙玺菁,周刚,仲维杰,康淑瑰编著 2015年版
- 常用数值算法及其MATLAB实现 [夏省祥,于正文 著] 2014年版
- 实变函数与泛函分析概要 第1册 第5版 [郑维行,王声望编]

