网站地图 | Tags | 热门标准 | 最新标准 | 订阅
您当前的位置:首页 > 线性代数 英文版 [孙晓娟编著] > 下载地址2

线性代数 英文版 [孙晓娟编著]

  • 名  称:线性代数 英文版 [孙晓娟编著] - 下载地址2
  • 类  别:数学书籍
  • 下载地址:[下载地址2]
  • 提 取 码
  • 浏览次数:3
下载帮助: 发表评论 加入收藏夹 错误报告目录
发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表
新闻评论(共有 0 条评论)

资料介绍

线性代数 英文版
作者:孙晓娟编著
出版时间:2018年版
内容简介
  《LINEAR ALGEBRA(线性代数 英文版)/普通高等教育“十三五”规划教材》的主要内容是矩阵和行列式、线性方程组、方阵的特征值和特征向量、二次型,共四个章节。□□章先引入矩阵的概念,而后介绍矩阵的基本运算和性质、矩阵的秩和逆、方阵的行列式运算及其性质;第2章介绍线性方程组的解、向量组的线性相关性、正交基;第3章介绍方阵的特征值与特征向量,以及方阵的相似对角化;□后,第4章介绍二次型及其矩阵和将二次型化为标准型的方法。
目录
Chapter 1 Matrices and Determinants
1.1 Matrices
1.2 Matrix Arithmetic
1.2.1 Equality
1.2.2 Scalar Multiplication
1.2.3 Matrix Addition
1.2.4 Matrix Multiplication
1.2.5 Transpose of a Matrix
1.3 Determinants of Square Matrices
1.3.1 Second Order Determinant
1.3.2 n-th Order Determinant
1.3.3 Properties of Determinants
1.3.4 Evaluation of Determinants
1.3.5 Laplace's Theorem
1.4 Block Matrices
1.4.1 The Concept of Block Matrices
1.4.2 Evaluation of Block Matrices
1.5 Invertible Matrices
1.6 Elementary Matrices
1.6.1 Elementary Operations of Matrices
1.6.2 Elementary Matrices
1.6.3 Use Elementary Operations to Get the Inverse Matrix
1.7 Rank of Matrices
1.8 Exercises

Chapter 2 Systems of Linear Equations
2.1 Systems of Linear Equations
2.2 Vectors
2.3 Linear Independence
2.3.1 Linear Combination
2.3.2 Linear Dependence and Linear Independence
2.4 Maximally Linearly Independent Vector Group
2.4.1 Equivalent Vector Sets
2.4.2 Maximally Linearly Independent Group
2.4.3 The Relationship Between Rank of Matrices and Rank of Vector Sets
2.5 Vector Space
2.6 General Solutions of Linear Systems
2.6.1 General Solutions of Homogenous Linear Systems
2.6.2 General Solutions of Non-homogenous Linear Systems
2.7 Exercises

Chapter 3 Eigenvalues and Eigenveetors
3.1 Eigenvalues and Eigenvectors
3.1.1 Definition of Eigenvalues and Eigenvectors
3.1.2 Properties of Eigenvalues and Eigenvectors
3.2 Diagonalization o{ Square Matrices
3.2.1 Similar Matrix
3.2.2 Diagonalization of Square Matrices
3.3 Orthonormal Basis
3.3.1 Inner Product of Vectors
3.3.2 Orthogonal Set and Basis
3.3.3 Gram-Schmidt Orthogonalization Process
3.3.4 Orthogonal Matrix
3.4 Diagonalization of Real Symmetric Matrices
3.4.1 Properties of Eigenvalues of Real Symmetric Matrices
3.5 Exercises

Chapter 4 Quadratic Form
4.1 Real Quadratic Form and Its Matrix
4.2 Diagonal Form of Quadratic Form
4.3 Diagonal Form of Real Quadratic Form
4.3.1 Changing Quadratic Form into Diagonal Form by Orthogonal Transformation
4.3.2 Changing Quadratic Form into Diagonal Form by the Method of Completing the Square
4.4 Canonical Form of Real Quadratic Form
4.5 Positive Definite Quadratic Form and Matrices
4.6 Exercises
References

下载排行 | 下载帮助 | 下载声明 | 信息反馈 | 网站地图  360book | 联系我们谢谢