您当前的位置:首页 > 流形上的层 英文 [(日)柏原正树 著] 2014年版 > 下载地址2
流形上的层 英文 [(日)柏原正树 著] 2014年版
- 名 称:流形上的层 英文 [(日)柏原正树 著] 2014年版 - 下载地址2
- 类 别:数学书籍
- 下载地址:[下载地址2]
- 提 取 码:3hcc
- 浏览次数:3
新闻评论(共有 0 条评论) |
资料介绍
流形上的层(英文版)
出版时间:2014年版
内容简介
层论是代数拓扑、代数几何和偏微分方程的交叉形成得一个很现代,很活跃的领域。《流形上的层(英文版)》从层论的基础讲起,强调微局部观点。包括了许多有趣的观点,写作风格清晰明了,将数学的这个全新,庞大的分支展现给读者。
目录
Introduction
A Short History: Les Debuts De La Theorie des Faheeaux By Christian Houzel
1. Homologieal Algebra
Summary
1.1. Categories and Functors
1.2. Abelian Categories
1.3. Categories of Complexes
1.4. Mapping Cones
1.5. Triangulated Categories
1.6. Localization of Categories
1.7. Derived Categories
1.8. Derived Functors
1.9. Double Complexes
1.10. Bifunctors
1.11. Ind-Objects And Pro-Objects
1.12. The Mittag-Leffler Condition
Exercises To Chapter I
Notes
Ⅱ.Sheaves
Summary
2.1. Presheaves
2.2. Sheaves
2.3. Operations on Sheaves
2.4. Injective, Flabby and Flat Sheaves
2.5. Sheaves on Locally Compact Spaces
2.6. Cohomology of Sheaves
2.7. Some Vanishing Theorems
2.8. Cohomology of Coverings
2.9. Examples of Sheaves on Real and Complex Manifolds
……
Ⅲ. poincare. verdier duality and fourier-sato transformation
Ⅳ. specialization and microlocalization
Ⅴ. micro-support of sheaves
Ⅵ. micro-support and microlocalization
Ⅶ. contact transformations and pure sheaves
Ⅷ. constructible sheaves
Ⅸ. characteristic cycles
Ⅹ. perverse sheaves
Ⅺ. applications to θ-modules and d-modules
出版时间:2014年版
内容简介
层论是代数拓扑、代数几何和偏微分方程的交叉形成得一个很现代,很活跃的领域。《流形上的层(英文版)》从层论的基础讲起,强调微局部观点。包括了许多有趣的观点,写作风格清晰明了,将数学的这个全新,庞大的分支展现给读者。
目录
Introduction
A Short History: Les Debuts De La Theorie des Faheeaux By Christian Houzel
1. Homologieal Algebra
Summary
1.1. Categories and Functors
1.2. Abelian Categories
1.3. Categories of Complexes
1.4. Mapping Cones
1.5. Triangulated Categories
1.6. Localization of Categories
1.7. Derived Categories
1.8. Derived Functors
1.9. Double Complexes
1.10. Bifunctors
1.11. Ind-Objects And Pro-Objects
1.12. The Mittag-Leffler Condition
Exercises To Chapter I
Notes
Ⅱ.Sheaves
Summary
2.1. Presheaves
2.2. Sheaves
2.3. Operations on Sheaves
2.4. Injective, Flabby and Flat Sheaves
2.5. Sheaves on Locally Compact Spaces
2.6. Cohomology of Sheaves
2.7. Some Vanishing Theorems
2.8. Cohomology of Coverings
2.9. Examples of Sheaves on Real and Complex Manifolds
……
Ⅲ. poincare. verdier duality and fourier-sato transformation
Ⅳ. specialization and microlocalization
Ⅴ. micro-support of sheaves
Ⅵ. micro-support and microlocalization
Ⅶ. contact transformations and pure sheaves
Ⅷ. constructible sheaves
Ⅸ. characteristic cycles
Ⅹ. perverse sheaves
Ⅺ. applications to θ-modules and d-modules
下一篇: 计算技术 [邵春梅,孟祥英 主编] 2011年版
上一篇: 实分析中的反例 2014年版