您当前的位置:首页 > 数据降维和聚类中的若干问题研究(英文版) > 下载地址1
数据降维和聚类中的若干问题研究(英文版)
- 名 称:数据降维和聚类中的若干问题研究(英文版) - 下载地址1
- 类 别:数学书籍
- 下载地址:[下载地址1]
- 提 取 码:p1d7
- 浏览次数:3
新闻评论(共有 0 条评论) |
资料介绍
数据降维和聚类中的若干问题研究(英文版)
出版时间:2011年版
内容简介
A central research area in data mining and machine learning is probabilis-tic modeling because it has a number of advantages over non-probabilistic methods. Given a probabilistic model, one could fit the model using max-imum likelihood (ML) method or Variational Bayesian (VB) method. In ML method, (1) many algorithms may converge very slowly and thus com- putationally efficient algorithms are often desirable; and (2) the choice of a suitable modelis difficult though many model selection criteria exist and thus criteria with higher accuracy are desired. In VB method, employingdifferent priors may yield different performances and thus studies on how to choose a suitable prior are important. In this book, three sub-topics were studied: Modeling, Estimation and Model selection for dimension reduc- ition and clustering.
目录
1 Introduction
1.1 PCA and Latent Variable Models
1.1.1 PCA
1.1.2 Latent Variable Models
1.1.3 FA and PPCA
1.2 Motivations and Contributions
1.3 Organization of the Book
2 ML Estimation for Factor Analysis: EM or non-EM
2.1 Introduction
2.2 FA Model and Three Estimation Algorithms
2.2.1 FA model
2.2.2 Lawley (1940)'s simple iteration algorithm
2.2.3 EM type algorithms
2.3 TheECME2 algorithm
2.3.1 The maximization in the first CM-step
2.3.2 The maximization in the second CM-step
2.3.3 Practical consideration
2.3.4 ECME2 vs. simpleiteration algorithm
2.4 The CMAlgorithm
2.4.1 The maximizationin the second CM-step
2.4.2 When will conditionlbe satisfied
2.4.3 Recursive computation ofthe matrix Bz
2.4.4 On the nature of stationary points
2.5 Simulations
2.5.1 Simulation Data
2.5.2 Performance Analysis
2.5.3 On different starting values
2.6 Conclusion and Future Work
2.7 Appendix
2.7.1 Proofs
2.7.2 Some Notes
3 Fast ML estimation for the Mixture of Factor Analyzers via an ECM Algorithm
3.1 Introduction
3.2 MFA model and an ECM algorithm
……
4 Mixture Model Selection:BIC or Hierarchical BIC
5 A Note on Variational Bayesian Factor Analysis
6 Bilinear Probabilistic Principal Component Analysis
7 Conclusions and discussions
References
出版时间:2011年版
内容简介
A central research area in data mining and machine learning is probabilis-tic modeling because it has a number of advantages over non-probabilistic methods. Given a probabilistic model, one could fit the model using max-imum likelihood (ML) method or Variational Bayesian (VB) method. In ML method, (1) many algorithms may converge very slowly and thus com- putationally efficient algorithms are often desirable; and (2) the choice of a suitable modelis difficult though many model selection criteria exist and thus criteria with higher accuracy are desired. In VB method, employingdifferent priors may yield different performances and thus studies on how to choose a suitable prior are important. In this book, three sub-topics were studied: Modeling, Estimation and Model selection for dimension reduc- ition and clustering.
目录
1 Introduction
1.1 PCA and Latent Variable Models
1.1.1 PCA
1.1.2 Latent Variable Models
1.1.3 FA and PPCA
1.2 Motivations and Contributions
1.3 Organization of the Book
2 ML Estimation for Factor Analysis: EM or non-EM
2.1 Introduction
2.2 FA Model and Three Estimation Algorithms
2.2.1 FA model
2.2.2 Lawley (1940)'s simple iteration algorithm
2.2.3 EM type algorithms
2.3 TheECME2 algorithm
2.3.1 The maximization in the first CM-step
2.3.2 The maximization in the second CM-step
2.3.3 Practical consideration
2.3.4 ECME2 vs. simpleiteration algorithm
2.4 The CMAlgorithm
2.4.1 The maximizationin the second CM-step
2.4.2 When will conditionlbe satisfied
2.4.3 Recursive computation ofthe matrix Bz
2.4.4 On the nature of stationary points
2.5 Simulations
2.5.1 Simulation Data
2.5.2 Performance Analysis
2.5.3 On different starting values
2.6 Conclusion and Future Work
2.7 Appendix
2.7.1 Proofs
2.7.2 Some Notes
3 Fast ML estimation for the Mixture of Factor Analyzers via an ECM Algorithm
3.1 Introduction
3.2 MFA model and an ECM algorithm
……
4 Mixture Model Selection:BIC or Hierarchical BIC
5 A Note on Variational Bayesian Factor Analysis
6 Bilinear Probabilistic Principal Component Analysis
7 Conclusions and discussions
References
下一篇: 完美幻方基本理论与编制方法
上一篇: 数域上的傅里叶分析(英文版)2011年版
相关推荐
- 李毓佩数学科普文集 数学西游记
- 复变函数与积分变换 第2版 [林益 赵一男 主编]
- 高等农林教育 十三五 规划教材 线性代数 第2版 [梁保松,陈振编] 2017年版
- 俄罗斯立体几何问题集
- 同济博士论丛 关于单值化和Ricci流的一些结果
- 趣味数学366 第二版
- 有限元方法中的数学理论 英文版 (美)Susanne C.Brenner,(美)L.Ridgway Scott 著 1998年版
- 有限元分析技术——以ANSYS Workbench 17.0为工具软件
- 纯粹数学与应用数学专著 典藏版 第4号 初边值问题差分方法及绕流 朱幼兰,钟锡昌,陈炳木,张作民 著 2018年版
- 爸爸教的数学 [谢永红 著]