您当前的位置:首页 > 矩阵论 第二版 [方保镕,周继东,李医民 编著] 2013年版 > 下载地址1
矩阵论 第二版 [方保镕,周继东,李医民 编著] 2013年版
- 名 称:矩阵论 第二版 [方保镕,周继东,李医民 编著] 2013年版 - 下载地址1
- 类 别:数学书籍
- 下载地址:[下载地址1]
- 提 取 码:ep7c
- 浏览次数:3
新闻评论(共有 0 条评论) |
资料介绍
矩阵论 第二版
出版时间:2013年版
内容简介
《矩阵论(第2版)》比较全面、系统地介绍了矩阵的基本理论、方法及其应用,全书分上、下两篇,上篇为基础篇,下篇为应用篇,共8章,分别介绍了矩阵的几何理论(包括线性空间与线性算子,内积空间与等积变换),λ矩阵与若尔当标准形,矩阵的分解,赋范线性空间与矩阵范数,矩阵微积分及其应用,广义逆矩阵及其应用,几类特殊矩阵与特殊积(如非负矩阵与正矩阵、循环矩阵与素矩阵、随机矩阵和双随机矩阵、单调矩阵、M矩阵与H矩阵、T矩阵与汉克尔矩阵以及克罗内克积、阿达马积与反积等),前7章每章均配有一定数量的习题.附录中还给出了15套模拟自测试题,所有习题和自测题(约1300题)的详细解答,即将由清华大学 另行出版。《矩阵论(第2版)》可作为理工科大学各专业研究生的学位课程教材,也可作为理工科和师范类院校高年级本科生的选修课教材,并可供有关专业的教师和工程技术人员参考。
目录
上篇 基础篇
第1章 矩阵的几何理论
引言矩阵是什么
1.1 线性空间上的线性算子与矩阵
1.1.1 线性空间
习题1(1)
1.1.2 线性算子及其矩阵
习题1(2)
1.2 内积空间上的等积变换
1.2.1 内积空间
习题1(3)
1.2.2 等积变换及其矩阵
习题1(4)
1.3 埃尔米特变换及其矩阵
1.3.1 对称变换与埃尔米特变换
1.3.2 埃尔米特正定、半正定矩阵
1.3.3 矩阵不等式
1.3.4 埃尔米特矩阵特征值的性质
1.3.5 一般的复正定矩阵
习题1(5)
第2章 A矩阵与若尔当标准形
引言什么是矩阵标准形
2.1 λ矩阵
2.1.1 λ矩阵的概念
2.1.2 λ矩阵在相抵下的标准形
2.1.3 不变因子与初等因子
2.2 若尔当标准形
2.2.1 数字矩阵化为相似的若尔当标准形
2.2.2 若尔当标准形的其他求法
习题2
第3章 矩阵的分解
引言矩阵分解的意义
3.1 矩阵的三角分解
3.1.1 消元过程的矩阵描述
3.1.2 矩阵的三角分解
3.1.3 常用的三角分解公式
3.2 矩阵的QR(正交三角)分解
3.2.1 QR分解的概念
3.2.2 QR分解的实际求法
3.3 矩阵的最大秩分解
3.4 矩阵的奇异值分解和极分解
3.5 矩阵的谱分解
3.5.1 正规矩阵
3.5.2 正规矩阵的谱分解
3.5.3 单纯矩阵的谱分解
习题3
第4章 赋范线性空间与矩阵范数
引言范数是什么
4.1 赋范线性空间
4.1.1 向量的范数
4.1.2 向量范数的性质
习题4(1)
4.2 矩阵的范数
4.2.1 矩阵范数的定义与性质
4.2.2 算子范数
4.2.3 谱范数的性质和谱半径
习题4(2)
4.3 摄动分析与矩阵的条件数
4.3.1 病态方程组与病态矩阵
4.3.2 矩阵的条件数
4.3.3 矩阵特征值的摄动分析
习题4(3)
下篇 应用篇
第5章 矩阵微积分及其应用
引言讨论矩阵微积分的必要性
5.1 向量序列和矩阵序列的极限
……
出版时间:2013年版
内容简介
《矩阵论(第2版)》比较全面、系统地介绍了矩阵的基本理论、方法及其应用,全书分上、下两篇,上篇为基础篇,下篇为应用篇,共8章,分别介绍了矩阵的几何理论(包括线性空间与线性算子,内积空间与等积变换),λ矩阵与若尔当标准形,矩阵的分解,赋范线性空间与矩阵范数,矩阵微积分及其应用,广义逆矩阵及其应用,几类特殊矩阵与特殊积(如非负矩阵与正矩阵、循环矩阵与素矩阵、随机矩阵和双随机矩阵、单调矩阵、M矩阵与H矩阵、T矩阵与汉克尔矩阵以及克罗内克积、阿达马积与反积等),前7章每章均配有一定数量的习题.附录中还给出了15套模拟自测试题,所有习题和自测题(约1300题)的详细解答,即将由清华大学 另行出版。《矩阵论(第2版)》可作为理工科大学各专业研究生的学位课程教材,也可作为理工科和师范类院校高年级本科生的选修课教材,并可供有关专业的教师和工程技术人员参考。
目录
上篇 基础篇
第1章 矩阵的几何理论
引言矩阵是什么
1.1 线性空间上的线性算子与矩阵
1.1.1 线性空间
习题1(1)
1.1.2 线性算子及其矩阵
习题1(2)
1.2 内积空间上的等积变换
1.2.1 内积空间
习题1(3)
1.2.2 等积变换及其矩阵
习题1(4)
1.3 埃尔米特变换及其矩阵
1.3.1 对称变换与埃尔米特变换
1.3.2 埃尔米特正定、半正定矩阵
1.3.3 矩阵不等式
1.3.4 埃尔米特矩阵特征值的性质
1.3.5 一般的复正定矩阵
习题1(5)
第2章 A矩阵与若尔当标准形
引言什么是矩阵标准形
2.1 λ矩阵
2.1.1 λ矩阵的概念
2.1.2 λ矩阵在相抵下的标准形
2.1.3 不变因子与初等因子
2.2 若尔当标准形
2.2.1 数字矩阵化为相似的若尔当标准形
2.2.2 若尔当标准形的其他求法
习题2
第3章 矩阵的分解
引言矩阵分解的意义
3.1 矩阵的三角分解
3.1.1 消元过程的矩阵描述
3.1.2 矩阵的三角分解
3.1.3 常用的三角分解公式
3.2 矩阵的QR(正交三角)分解
3.2.1 QR分解的概念
3.2.2 QR分解的实际求法
3.3 矩阵的最大秩分解
3.4 矩阵的奇异值分解和极分解
3.5 矩阵的谱分解
3.5.1 正规矩阵
3.5.2 正规矩阵的谱分解
3.5.3 单纯矩阵的谱分解
习题3
第4章 赋范线性空间与矩阵范数
引言范数是什么
4.1 赋范线性空间
4.1.1 向量的范数
4.1.2 向量范数的性质
习题4(1)
4.2 矩阵的范数
4.2.1 矩阵范数的定义与性质
4.2.2 算子范数
4.2.3 谱范数的性质和谱半径
习题4(2)
4.3 摄动分析与矩阵的条件数
4.3.1 病态方程组与病态矩阵
4.3.2 矩阵的条件数
4.3.3 矩阵特征值的摄动分析
习题4(3)
下篇 应用篇
第5章 矩阵微积分及其应用
引言讨论矩阵微积分的必要性
5.1 向量序列和矩阵序列的极限
……
下一篇: 矩阵分析引论 第五版
上一篇: 数理逻辑的思想与方法