网站地图 | Tags | 热门标准 | 最新标准 | 订阅

微积分 2 英文 毛纲源,马迎秋,梁敏主编 2017年版

  • 名  称:微积分 2 英文 毛纲源,马迎秋,梁敏主编 2017年版 - 下载地址1
  • 类  别:数学书籍
  • 下载地址:[下载地址1]
  • 提 取 码
  • 浏览次数:3
下载帮助: 发表评论 加入收藏夹 错误报告目录
发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表
新闻评论(共有 0 条评论)

资料介绍

微积分 2 英文
作者: 毛纲源,马迎秋,梁敏主编
出版时间:2017年版
内容简介
本书采用学生易于接受的知识结构和英语表述方式,科学、系统地介绍了微积分(下册)中无穷级数、偏导数和二重积分、微分方程、差分方程等知识。强调通用性和适用性,兼顾先进性。本书起点低,难度坡度适中,语言简洁明了,不仅适用于课堂教学使用,同时也适用于自学自习。全书有关键词索引,习题按小节配置,题量适中,题型全面,书后附有答案。
本书读者对象为高等院校理工、财经、医药、农林等专业大学生和教师,特别适合作为中外合作办学的国际教育班的学生以及准备出国留学深造学子的参考书。
目录
Chapter 7 Infinite Series(1)
7.1 Series(1)
Exercises 7.1(5)
7.2 Series with Positive Terms(7)
7.2.1 The Comparison Tests(7)
7.2.2 The Root and Ratio Tests(11)
Exercises 7.2(14)
7.3 Alternating Series and Absolute Convergence(15)
7.3.1 Alternating Series (15)
7.3.2 Absolute Convergence(18)
Exercises 7.3(19)
7.4 Power Series(20)
Exercises 7.4(26)
7.5 Differentiation and Integration of Power Series(27)
Exercises 7.5(30)
7.6 Taylor Series(31)
7.6.1 The Taylor Polynomials at x=0 (or Maclaurin Polynomials)(31)
7.6.2 The Taylor’s series(or Maclaurin series) for function f at 0 (32)
7.6.3 The Taylor’s series for function f at a (an arbitrary real number)(33)
Exercises 7.6(38)

Chapter 8 Partial Derivatives and Double Integrals(39)
8.1 Functions of Two Variables(39)
Exercises 8.1(45)
8.2 Limits and Continuity(45)
8.2.1 Limits(45)
8.2.2 Continuity(48)
Exercises 8.2(50)
8.3 Partial Derivatives(51)
8.3.1 Definition(51)
8.3.2 Economical Interpretations of Partial Derivatives(55)
8.3.3 Geometric Interpretations of Partial Derivatives(56)
Exercises 8.3(57)
8.4 Strategy for Finding Partial Derivatives(58)
8.4.1 The Chain Rule(58)
8.4.2 Implicit Differentiation(62)
8.4.3 Higher Derivatives(64)
Exercises 8.4(66)
8.5 Total Differentials(68)
8.5.1 Definition(68)
8.5.2 Relations between Continuity, Partial Derivatives, and Differentiability(69)
8.5.3 Rules for Finding Total Differentials(70)
8.5.4 The Invariance of First Order Total Differential Form(71)
Exercises 8.5(73)
8.6 Extremum of Functions of Two Variables(74)
8.6.1 Locating Maxima and Minima(74)
8.6.2 Methods of Finding Absolute Maxima and Minima(78)
8.6.3 Methods of Finding Conditional Extremum(79)
Exercises 8.6(82)
8.7 Directional Derivatives and The Gradient Vector(83)
8.7.1 Vectors and Vector Operations(83)
8.7.2 Directional Derivatives and The Gradient Vector(85)
8.7.3 The Relation between Directional Derivatives and The Gradient Vector(88)
Exercises 8.7(90)
8.8 Double Integrals(91)
8.8.1 Definition and Properties(91)
8.8.2 Double Integrals in Rectangular Coordinates(94)
8.8.3 Polar Coordinates(102)
8.8.4 Double Integrals in Polar Coordinates(106)
8.8.5 Application of Double Integrals(108)
Exercises 8.8(109)

Chapter 9 Differential Equations(112)
9.1 Introduction(112)
Exercises 9.1(114)
9.2 FirstOrder Linear Differential Equations(114)
9.2.1 Separable Equations(115)
9.2.2 Homogeneous Differential Equations(117)
9.2.3 FirstOrder Linear Differential Equations(118)
9.2.4 Total (or Exact) Differential Equations(121)
9.2.5 Bernoulli Equations(Equations reducible to a linear one)(123)
9.2.6 Euler Equations(124)
Exercises 9.2(126)
9.3 Secondorder Differential Equations(127)
9.3.1 Reducible SecondOrder Differential Equations(127)
9.3.2 Complex Numbers (129)
9.3.3 Homogeneous Linear Equations(133)
9.3.4 Nonhomogeneous Linear Equations(137)
Exercises 9.3(142)

Chapter 10 Difference Equations(143)
10.1 Introduction (143)
10.1.1 Definition(143)
10.1.2 Properties(144)
Exercises 10.1(147)
10.2 Linear Difference Equations(147)
10.2.1 nthOrder Difference Equations(147)
10.2.2 FirstOrder Difference Equations(149)
10.2.3 SecondOrder Difference Equations(156)
Exercises 10.2(161)
下载排行 | 下载帮助 | 下载声明 | 信息反馈 | 网站地图  360book | 联系我们谢谢