您当前的位置:首页 > 单纯同伦理论 英文影印版 [格兹,JohnF.Jardine 著] 2014年版 > 下载地址1
单纯同伦理论 英文影印版 [格兹,JohnF.Jardine 著] 2014年版
- 名 称:单纯同伦理论 英文影印版 [格兹,JohnF.Jardine 著] 2014年版 - 下载地址1
- 类 别:数学书籍
- 下载地址:[下载地址1]
- 提 取 码:
- 浏览次数:3
发表评论
加入收藏夹
错误报告
目录| 新闻评论(共有 0 条评论) |
资料介绍
单纯同伦理论 英文影印版
作者:格兹,JohnF.Jardine 著
出版时间:2014年版
内容简介
Many of the original research and survey monographs ln pure and applied mathematics published by Birkh iuser in recent decades have been groundbreaking and have come to be regarded as found。 ational to the SUbject.Through the MBC Series,a select number ofthese modern classics,entirely uncorrected,are being released in paperback Iand as eBooks)to ensure that these treasures remainaccessible to new generations of students,scholars,and reseat-chers。
目录
Chapter l Simplicial sets
1.Basic definitions
2.Realization
3.Kan complexes
4.Anodyne extensions
5.Function complexes
6.Simplicial homotopy
7.Simplicial homotopy groups
8.Fundamental groupoid
9.Categories of fibrant objects
10.Minimal fibrations
11.The closed model structure
Chapter II Model Categories
1.Homotopical algebra
2.Simplicial categories
3.Simplicial model categories
4.The existence of simplicial model category structures
5.Examples of simplicial model categories
6.A generalization of Theorem 4.1
7.Quillen’S total derived functor theorem
8.Homotopy cartesian diagrams
Chapter III Classical results and constructions
1.The fundamental groupoid.revisited
2.Simplicial abelian groups
3.The Hurewicz map
4.The Ex∞functor
5.The Kan suspension
Chapter IV Bisimplicial sets
1.Bisimplicial sets:first properties
2.Bisimplicial abelian groups
2.1.The translation object
2.2 The generalized Eilenberg-Zilber theorem
3.Closed model structures for bisimplicial sets
3.1.The Bousfield-Kan structure
3.2.The Reedy structure
3.3.The Moerdijk structure
4.The Bousfield―Friedlander theorem
5.Theorem B and group completion
5.1.The’serre spectral sequence
5.2.Theorem B
5.3.The group completion theorem
Chapter V Simplicial groups
1.Skeleta
2.Principal fibrations I:simplicial G-spaces
3.Principal fibrations II:classifications
4.Universal cocycles and WG
5.The loop group construction
6.Reduced simplicial sets,Milnor’S FK-construction
7.Simplicial groupoids
Chapter VI The homotopy theory of towers
1.A model category structure for towers of spaces
2.The spectral sequence of a tower of fibrations
3.Postnikov towers
4.Local coefficients and equivariant cohomology
5.On k-invariants
6.Nilpotent spaces
Chapter VII Reedy model categories
1.Decomposition of simplicial objects
2.Reedy model category structures
3.Geometric realization
4.Cosimplicial spaces
Chapter VIII Cosimplicial spaces:applications
1.The homotopy spectral sequence of a cosimplicial space
2.Homotopy inverse limits
3.Completions
4.Obstruction theory
Chapter IX Simplicial functors and homotopy coherence
1.Simplicial functors
2.The Dwyer-Kan theorem
3.Homotopy coherence
3.1.Classical homotopy COherence
3.2.Homotopy coherence:an expanded version
3.3.Lax functors
3.4.The Grothendieck construction
4.Realization theorems
Chapter X Localization
1.Localization with respect to a map
2.The closed model category structure
3.Bousfield localization.
4.A model for the stable homotopy category
References
Index
作者:格兹,JohnF.Jardine 著
出版时间:2014年版
内容简介
Many of the original research and survey monographs ln pure and applied mathematics published by Birkh iuser in recent decades have been groundbreaking and have come to be regarded as found。 ational to the SUbject.Through the MBC Series,a select number ofthese modern classics,entirely uncorrected,are being released in paperback Iand as eBooks)to ensure that these treasures remainaccessible to new generations of students,scholars,and reseat-chers。
目录
Chapter l Simplicial sets
1.Basic definitions
2.Realization
3.Kan complexes
4.Anodyne extensions
5.Function complexes
6.Simplicial homotopy
7.Simplicial homotopy groups
8.Fundamental groupoid
9.Categories of fibrant objects
10.Minimal fibrations
11.The closed model structure
Chapter II Model Categories
1.Homotopical algebra
2.Simplicial categories
3.Simplicial model categories
4.The existence of simplicial model category structures
5.Examples of simplicial model categories
6.A generalization of Theorem 4.1
7.Quillen’S total derived functor theorem
8.Homotopy cartesian diagrams
Chapter III Classical results and constructions
1.The fundamental groupoid.revisited
2.Simplicial abelian groups
3.The Hurewicz map
4.The Ex∞functor
5.The Kan suspension
Chapter IV Bisimplicial sets
1.Bisimplicial sets:first properties
2.Bisimplicial abelian groups
2.1.The translation object
2.2 The generalized Eilenberg-Zilber theorem
3.Closed model structures for bisimplicial sets
3.1.The Bousfield-Kan structure
3.2.The Reedy structure
3.3.The Moerdijk structure
4.The Bousfield―Friedlander theorem
5.Theorem B and group completion
5.1.The’serre spectral sequence
5.2.Theorem B
5.3.The group completion theorem
Chapter V Simplicial groups
1.Skeleta
2.Principal fibrations I:simplicial G-spaces
3.Principal fibrations II:classifications
4.Universal cocycles and WG
5.The loop group construction
6.Reduced simplicial sets,Milnor’S FK-construction
7.Simplicial groupoids
Chapter VI The homotopy theory of towers
1.A model category structure for towers of spaces
2.The spectral sequence of a tower of fibrations
3.Postnikov towers
4.Local coefficients and equivariant cohomology
5.On k-invariants
6.Nilpotent spaces
Chapter VII Reedy model categories
1.Decomposition of simplicial objects
2.Reedy model category structures
3.Geometric realization
4.Cosimplicial spaces
Chapter VIII Cosimplicial spaces:applications
1.The homotopy spectral sequence of a cosimplicial space
2.Homotopy inverse limits
3.Completions
4.Obstruction theory
Chapter IX Simplicial functors and homotopy coherence
1.Simplicial functors
2.The Dwyer-Kan theorem
3.Homotopy coherence
3.1.Classical homotopy COherence
3.2.Homotopy coherence:an expanded version
3.3.Lax functors
3.4.The Grothendieck construction
4.Realization theorems
Chapter X Localization
1.Localization with respect to a map
2.The closed model category structure
3.Bousfield localization.
4.A model for the stable homotopy category
References
Index
相关推荐
- 格致方法 定量研究系列 高级回归分析 [(美)保尔 埃里森 等著] 2011年版
- 应用回归分析 [唐年胜,李会琼 编著] 2014年版
- 数学史讲义概要
- 育才学案 高中数学 必修5 人教版 马瑞娟分册主编 2016年版
- 数学思维训练营 马丁·加德纳的趣味数学题 卢源,李凌,朱惠霖责任编辑;林自新,谈祥柏译;(美国)马丁·加德纳 2019年版
- 古今数学思想(第三册)2014年版
- 智能科学技术著作丛书 随机系统总体最小二乘估计理论及应用
- 数学思想与数学文化
- 数学建模与数据处理方法及其应用丛书 数学建模与数学实验 第3版 汪晓银,李治,周保平主编 2019年版
- 天才与算法:人脑与AI的数学思维 马库斯·杜·索托伊著 2020年版

