您当前的位置:首页 > 中国科学技术大学精品教材 高等工程数学 张韵华,汪琥庭,宋立功,张明波 著 2016年版 > 下载地址2
中国科学技术大学精品教材 高等工程数学 张韵华,汪琥庭,宋立功,张明波 著 2016年版
- 名 称:中国科学技术大学精品教材 高等工程数学 张韵华,汪琥庭,宋立功,张明波 著 2016年版 - 下载地址2
- 类 别:数学书籍
- 下载地址:[下载地址2]
- 提 取 码:
- 浏览次数:3
新闻评论(共有 0 条评论) |
资料介绍
中国科学技术大学精品教材 高等工程数学
作者:张韵华,汪琥庭,宋立功,张明波 著
出版时间: 2016年版
内容简介
本教材是为工程硕士公共数学基础课程“高等工程数学”课程设置。内容涵盖矩阵理论、数值分析和数理统计。为了适应工程硕士的专业特点,教材要易于教学,易于学生理解和掌握,扩展学生的数学视野,培养学生的应用意识。并结合数学软件在工程数学中的应用案例,加强和提高学生用计算机做数学的能力。
目录
目次
总序(ⅰ)
前言(ⅲ)
第1篇线性代数 (矩阵分析)
第1章矩阵和向量(3)
1.1矩阵和向量的定义(3)
1.2矩阵的基本运算(5)
1.2.1矩阵的加法和数乘(5)
1.2.2矩阵乘法(6)
1.2.3矩阵转置(8)
1.3初等变换和初等矩阵(9)
1.3.1高斯消元法(9)
1.3.2初等矩阵(11)
1.3.3矩阵求逆(14)
1.4方阵的行列式(15)
1.4.1二阶和三阶行列式(15)
1.4.2行列式的定义(16)
1.4.3行列式的计算(17)
1.4.4克拉默法则(21)
1.5矩阵分块运算(22)
附录1Mathematica中矩阵的定义和运算(24)
习题(26)
第2章线性空间(28)
2.1向量的相关性(28)
2.1.1线性组合和线性表示(28)
2.1.2线性相关与线性无关(29)
2.2秩(32)
2.2.1向量组的秩(32)
2.2.2矩阵的秩(33)
2.2.3相抵标准形(35)
2.3线性空间(35)
2.3.1线性空间的定义(35)
2.3.2线性子空间(36)
2.4维、基、坐标(37)
2.4.1维、基、坐标的定义(37)
2.4.2基变换与坐标变换(37)
2.5线性方程组的解(40)
附录2用Mathematica求解线性方程组(44)
习题(45)
第3章线性变换(47)
3.1线性变换及其运算(47)
3.1.1线性变换的定义和性质(47)
3.1.2线性变换的运算(49)
3.2线性变换的矩阵(50)
3.2.1线性变换的矩阵(50)
3.2.2线性变换与矩阵的关系(55)
3.3矩阵的相似(56)
3.4特征值与特征向量(57)
3.4.1特征值与特征向量的定义(57)
3.4.2特征值与特征向量的计算(58)
3.4.3特征多项式的性质(60)
3.5矩阵的相似对角化(61)
3.5.1矩阵可对角化的条件(61)
3.5.2*若尔当标准形简介(64)
附录3用Mathematica计算矩阵的特征值和特征向量(65)
习题(66)
第4章欧氏空间和二次型(68)
4.1内积和欧氏空间(68)
4.1.1内积的定义(68)
4.1.2欧氏空间的性质(70)
4.1.3正交投影(71)
4.1.4施密特正交化(72)
4.2正交变换和对称变换(75)
4.2.1正交变换(75)
4.2.2正交矩阵(76)
4.2.3对称变换(76)
4.2.4对称矩阵(77)
4.3二次型的矩阵表示(79)
4.4二次型的标准形(81)
4.4.1正交相合方法(81)
4.4.2配方法(82)
4.4.3初等变换法(83)
4.5相合不变量(85)
4.6正定二次型(88)
附录4用Mathematica做正交投影和标准正交化(91)
习题(91)
第5章矩阵和向量范数(93)
5.1向量范数(93)
5.1.1向量范数的定义(93)
5.1.2不同向量范数的关系(94)
5.1.3向量的极限(95)
5.2矩阵范数(95)
5.2.1矩阵范数的定义(95)
5.2.2常用矩阵范数(96)
5.2.3谱半径与收敛矩阵(98)
5.3矩阵的条件数(99)
附录5用Mathematica计算矩阵和向量范数(101)
第2篇数值计算
绪言(105)
第6章线性方程组数值解(108)
6.1高斯列主元消元(108)
6.1.1高斯消元法(108)
6.1.2列主元消元法(111)
6.2直接分解法(114)
6.2.1LU分解(115)
6.2.2*对称正定矩阵的LDLT分解(120)
6.3解线性方程组的迭代法(122)
6.3.1雅可比迭代(123)
6.3.2GaussSeidel迭代(126)
6.3.3*松弛迭代(129)
附录6用Mathematica求解方程组和矩阵分解(131)
习题(132)
第7章插值与拟合(134)
7.1拉格朗日插值多项式(134)
7.1.1拉格朗日插值多项式的存在性和唯一性(136)
7.1.2拉格朗日插值和插值基函数(137)
7.1.3n次插值多项式的误差(138)
7.2牛顿插值多项式(140)
7.2.1差商及其计算(140)
7.2.2牛顿插值的形式(142)
7.3厄米插值(144)
7.4三次样条函数(148)
7.4.1龙格现象(148)
7.4.2三次样条函数简介(149)
7.5拟合曲线(151)
7.5.1线性拟合和二次拟合函数(152)
7.5.2解矛盾方程组(154)
附录7Mathematica的插值和拟合函数(159)
习题(160)
第8章数值积分和数值微分(162)
8.1数值微分(162)
8.1.1差商与数值微分(162)
8.1.2插值型数值微分(164)
8.2牛顿科茨积分(165)
8.2.1插值型数值积分(166)
8.2.2牛顿科茨积分(167)
8.3复化数值积分(171)
8.3.1复化梯形积分(171)
8.3.2复化辛普森积分(173)
8.3.3复化积分的自动控制误差方法(174)
8.3.4龙贝格积分(176)
8.4重积分计算简介(178)
8.5*高斯型积分简介(180)
8.5.1高斯积分(180)
8.5.2高斯勒让德积分(181)
附录8Mathematica的数值积分(184)
习题(185)
第9章常微分方程数值解(186)
9.1欧拉公式(187)
9.1.1基于数值微商的欧拉公式(187)
9.1.2*欧拉公式的收敛性(190)
9.2龙格库塔方法(191)
9.2.1二阶龙格库塔方法(191)
9.2.2四阶龙格库塔格式(194)
9.2.3常微分方程组(195)
9.3*线性多步法(197)
9.4*常微分方程的稳定性(199)
附录9用Mathematica求解常微分方程(202)
习题(203)
第10章迭代法(205)
10.1非线性方程求根(205)
10.1.1二分法(205)
10.1.2迭代法(206)
10.2牛顿迭代法和弦截法(209)
10.2.1牛顿迭代格式(209)
10.2.2牛顿法的几何意义(210)
10.2.3弦截法迭代格式(211)
10.2.4弦截法的几何意义(212)
10.3*求解非线性方程组的牛顿方法(213)
10.4计算矩阵特征值的幂法和反幂法(215)
10.4.1幂法(215)
10.4.2幂法的规范运算(218)
10.4.3反幂法(221)
10.5*QR方法简介(222)
10.5.1Householder矩阵(222)
10.5.2QR分解(222)
附录10Mathematica的非线性方程求根和特征值计算(223)
习题(224)
第3篇概率论与数理统计
第11章统计数据的表示与处理(227)
11.1平均指标与变动度指标(227)
11.1.1平均指标及其计算(228)
11.1.2数据变动(变异)度指标(230)
11.2统计指数的计算与认识(232)
11.3数据的分组与分组数据的图示法(235)
11.4数据的线性普涨和普降方法(239)
11.5定量数据转化为定性数据的方法(240)
习题(241)
第12章随机变量概率分布及其应用(243)
12.1两点分布、二项分布及其应用(243)
12.1.1两点分布(243)
12.1.2二项分布(244)
12.1.3应用举例(245)
12.2泊松分布及其应用(247)
12.3正态分布及其应用(249)
12.3.1正态分布的概率密度函数f(x)与分布函数F(x)(250)
12.3.2标准正态分布的概率计算与分位点(251)
12.3.3正态分布的标准化及应用举例(252)
12.4指数分布(254)
习题(256)
第13章抽样分布与中心极限定理(258)
13.1总体与随机样本(258)
13.2数理统计中的四大分布(258)
13.2.1χ2 (卡方)分布(259)
13.2.2t分布(260)
13.2.3F分布(262)
13.3抽样分布中的常用公式(263)
13.4大数定律与中心极限定理(268)
13.4.1大数定律(268)
13.4.2中心极限定理的表现形式(271)
13.5中心极限定理的应用(274)
习题(277)
第14章参数估计(279)
14.1参数的点估计与应用(279)
14.2估计量的评价标准(284)
14.3参数的区间估计与应用(287)
14.4单侧置信区间估计(295)
习题(297)
第15章假设检验及其应用(299)
15.1假设检验的基本原理与步骤(299)
15.2正态总体均值的假设检验(300)
15.2.1单个正态总体均值的假设检验(300)
15.2.2两个正态总体均值差的假设检验(304)
15.3单边(侧)假设检验问题(306)
15.4正态总体方差的假设检验(308)
15.4.1单个正态总体方差的χ2检验(308)
15.4.2双正态总体方差齐性的F检验(309)
15.5假设检验中值得注意的几个问题(311)
15.5.1单边假设检验中原假设与备择假设的确定原则问题(311)
15.5.2两类错误问题(312)
习题(314)
第16章回归分析及其应用(316)
16.1回归分析的基本概念与思想(316)
16.2一元线性回归及其应用(316)
16.3可线性化的一元非线性回归(323)
16.4多元线性回归及其应用(327)
附录11Mathematica中概论统计命令(331)
习题(337)
参考文献(339)
作者:张韵华,汪琥庭,宋立功,张明波 著
出版时间: 2016年版
内容简介
本教材是为工程硕士公共数学基础课程“高等工程数学”课程设置。内容涵盖矩阵理论、数值分析和数理统计。为了适应工程硕士的专业特点,教材要易于教学,易于学生理解和掌握,扩展学生的数学视野,培养学生的应用意识。并结合数学软件在工程数学中的应用案例,加强和提高学生用计算机做数学的能力。
目录
目次
总序(ⅰ)
前言(ⅲ)
第1篇线性代数 (矩阵分析)
第1章矩阵和向量(3)
1.1矩阵和向量的定义(3)
1.2矩阵的基本运算(5)
1.2.1矩阵的加法和数乘(5)
1.2.2矩阵乘法(6)
1.2.3矩阵转置(8)
1.3初等变换和初等矩阵(9)
1.3.1高斯消元法(9)
1.3.2初等矩阵(11)
1.3.3矩阵求逆(14)
1.4方阵的行列式(15)
1.4.1二阶和三阶行列式(15)
1.4.2行列式的定义(16)
1.4.3行列式的计算(17)
1.4.4克拉默法则(21)
1.5矩阵分块运算(22)
附录1Mathematica中矩阵的定义和运算(24)
习题(26)
第2章线性空间(28)
2.1向量的相关性(28)
2.1.1线性组合和线性表示(28)
2.1.2线性相关与线性无关(29)
2.2秩(32)
2.2.1向量组的秩(32)
2.2.2矩阵的秩(33)
2.2.3相抵标准形(35)
2.3线性空间(35)
2.3.1线性空间的定义(35)
2.3.2线性子空间(36)
2.4维、基、坐标(37)
2.4.1维、基、坐标的定义(37)
2.4.2基变换与坐标变换(37)
2.5线性方程组的解(40)
附录2用Mathematica求解线性方程组(44)
习题(45)
第3章线性变换(47)
3.1线性变换及其运算(47)
3.1.1线性变换的定义和性质(47)
3.1.2线性变换的运算(49)
3.2线性变换的矩阵(50)
3.2.1线性变换的矩阵(50)
3.2.2线性变换与矩阵的关系(55)
3.3矩阵的相似(56)
3.4特征值与特征向量(57)
3.4.1特征值与特征向量的定义(57)
3.4.2特征值与特征向量的计算(58)
3.4.3特征多项式的性质(60)
3.5矩阵的相似对角化(61)
3.5.1矩阵可对角化的条件(61)
3.5.2*若尔当标准形简介(64)
附录3用Mathematica计算矩阵的特征值和特征向量(65)
习题(66)
第4章欧氏空间和二次型(68)
4.1内积和欧氏空间(68)
4.1.1内积的定义(68)
4.1.2欧氏空间的性质(70)
4.1.3正交投影(71)
4.1.4施密特正交化(72)
4.2正交变换和对称变换(75)
4.2.1正交变换(75)
4.2.2正交矩阵(76)
4.2.3对称变换(76)
4.2.4对称矩阵(77)
4.3二次型的矩阵表示(79)
4.4二次型的标准形(81)
4.4.1正交相合方法(81)
4.4.2配方法(82)
4.4.3初等变换法(83)
4.5相合不变量(85)
4.6正定二次型(88)
附录4用Mathematica做正交投影和标准正交化(91)
习题(91)
第5章矩阵和向量范数(93)
5.1向量范数(93)
5.1.1向量范数的定义(93)
5.1.2不同向量范数的关系(94)
5.1.3向量的极限(95)
5.2矩阵范数(95)
5.2.1矩阵范数的定义(95)
5.2.2常用矩阵范数(96)
5.2.3谱半径与收敛矩阵(98)
5.3矩阵的条件数(99)
附录5用Mathematica计算矩阵和向量范数(101)
第2篇数值计算
绪言(105)
第6章线性方程组数值解(108)
6.1高斯列主元消元(108)
6.1.1高斯消元法(108)
6.1.2列主元消元法(111)
6.2直接分解法(114)
6.2.1LU分解(115)
6.2.2*对称正定矩阵的LDLT分解(120)
6.3解线性方程组的迭代法(122)
6.3.1雅可比迭代(123)
6.3.2GaussSeidel迭代(126)
6.3.3*松弛迭代(129)
附录6用Mathematica求解方程组和矩阵分解(131)
习题(132)
第7章插值与拟合(134)
7.1拉格朗日插值多项式(134)
7.1.1拉格朗日插值多项式的存在性和唯一性(136)
7.1.2拉格朗日插值和插值基函数(137)
7.1.3n次插值多项式的误差(138)
7.2牛顿插值多项式(140)
7.2.1差商及其计算(140)
7.2.2牛顿插值的形式(142)
7.3厄米插值(144)
7.4三次样条函数(148)
7.4.1龙格现象(148)
7.4.2三次样条函数简介(149)
7.5拟合曲线(151)
7.5.1线性拟合和二次拟合函数(152)
7.5.2解矛盾方程组(154)
附录7Mathematica的插值和拟合函数(159)
习题(160)
第8章数值积分和数值微分(162)
8.1数值微分(162)
8.1.1差商与数值微分(162)
8.1.2插值型数值微分(164)
8.2牛顿科茨积分(165)
8.2.1插值型数值积分(166)
8.2.2牛顿科茨积分(167)
8.3复化数值积分(171)
8.3.1复化梯形积分(171)
8.3.2复化辛普森积分(173)
8.3.3复化积分的自动控制误差方法(174)
8.3.4龙贝格积分(176)
8.4重积分计算简介(178)
8.5*高斯型积分简介(180)
8.5.1高斯积分(180)
8.5.2高斯勒让德积分(181)
附录8Mathematica的数值积分(184)
习题(185)
第9章常微分方程数值解(186)
9.1欧拉公式(187)
9.1.1基于数值微商的欧拉公式(187)
9.1.2*欧拉公式的收敛性(190)
9.2龙格库塔方法(191)
9.2.1二阶龙格库塔方法(191)
9.2.2四阶龙格库塔格式(194)
9.2.3常微分方程组(195)
9.3*线性多步法(197)
9.4*常微分方程的稳定性(199)
附录9用Mathematica求解常微分方程(202)
习题(203)
第10章迭代法(205)
10.1非线性方程求根(205)
10.1.1二分法(205)
10.1.2迭代法(206)
10.2牛顿迭代法和弦截法(209)
10.2.1牛顿迭代格式(209)
10.2.2牛顿法的几何意义(210)
10.2.3弦截法迭代格式(211)
10.2.4弦截法的几何意义(212)
10.3*求解非线性方程组的牛顿方法(213)
10.4计算矩阵特征值的幂法和反幂法(215)
10.4.1幂法(215)
10.4.2幂法的规范运算(218)
10.4.3反幂法(221)
10.5*QR方法简介(222)
10.5.1Householder矩阵(222)
10.5.2QR分解(222)
附录10Mathematica的非线性方程求根和特征值计算(223)
习题(224)
第3篇概率论与数理统计
第11章统计数据的表示与处理(227)
11.1平均指标与变动度指标(227)
11.1.1平均指标及其计算(228)
11.1.2数据变动(变异)度指标(230)
11.2统计指数的计算与认识(232)
11.3数据的分组与分组数据的图示法(235)
11.4数据的线性普涨和普降方法(239)
11.5定量数据转化为定性数据的方法(240)
习题(241)
第12章随机变量概率分布及其应用(243)
12.1两点分布、二项分布及其应用(243)
12.1.1两点分布(243)
12.1.2二项分布(244)
12.1.3应用举例(245)
12.2泊松分布及其应用(247)
12.3正态分布及其应用(249)
12.3.1正态分布的概率密度函数f(x)与分布函数F(x)(250)
12.3.2标准正态分布的概率计算与分位点(251)
12.3.3正态分布的标准化及应用举例(252)
12.4指数分布(254)
习题(256)
第13章抽样分布与中心极限定理(258)
13.1总体与随机样本(258)
13.2数理统计中的四大分布(258)
13.2.1χ2 (卡方)分布(259)
13.2.2t分布(260)
13.2.3F分布(262)
13.3抽样分布中的常用公式(263)
13.4大数定律与中心极限定理(268)
13.4.1大数定律(268)
13.4.2中心极限定理的表现形式(271)
13.5中心极限定理的应用(274)
习题(277)
第14章参数估计(279)
14.1参数的点估计与应用(279)
14.2估计量的评价标准(284)
14.3参数的区间估计与应用(287)
14.4单侧置信区间估计(295)
习题(297)
第15章假设检验及其应用(299)
15.1假设检验的基本原理与步骤(299)
15.2正态总体均值的假设检验(300)
15.2.1单个正态总体均值的假设检验(300)
15.2.2两个正态总体均值差的假设检验(304)
15.3单边(侧)假设检验问题(306)
15.4正态总体方差的假设检验(308)
15.4.1单个正态总体方差的χ2检验(308)
15.4.2双正态总体方差齐性的F检验(309)
15.5假设检验中值得注意的几个问题(311)
15.5.1单边假设检验中原假设与备择假设的确定原则问题(311)
15.5.2两类错误问题(312)
习题(314)
第16章回归分析及其应用(316)
16.1回归分析的基本概念与思想(316)
16.2一元线性回归及其应用(316)
16.3可线性化的一元非线性回归(323)
16.4多元线性回归及其应用(327)
附录11Mathematica中概论统计命令(331)
习题(337)
参考文献(339)