您当前的位置:首页 > 统计力学 第2版 英文版 Morandi,G.等 著 2005年版 > 下载地址2
统计力学 第2版 英文版 Morandi,G.等 著 2005年版
- 名 称:统计力学 第2版 英文版 Morandi,G.等 著 2005年版 - 下载地址2
- 类 别:力学书籍
- 下载地址:[下载地址2]
- 提 取 码:
- 浏览次数:3
新闻评论(共有 0 条评论) |
资料介绍
统计力学 第2版 英文版
作者:Morandi,G.等 著
出版时间:2005年版
内容简介
This is the second,revised and enlarged edition of a book on Statistical Mechanics whose first edition appeared in the year 1995.No doubt there ate many excellent books on Statistical Mechanics,ranging from classical ones (like Tolman's [152],Schrodinger's[132]and LandauLifshitz's[83],e.g.)to more modern ones.A partial list of them is contained in the Bibliography listed at the end of the book.……此书为英文版。
目录
Preface
Chapter1 Thermodynamics
1.1 A Recollection of Basic Notions in CLassical Thermodynamics
1.2 Thermodynamic Potentials,Stability Conditions
1.3 A Mathematical Digression:Integrating Factors and
1A Thermodynamics of Paramagnetic Bodies
1C Some Relations on Partial Derivatives & Jacoblans
1D A Digression on:Integrability Conditions
Problems
Chapter2 Equilibrium Classical Statistical Mechanics
2.1 Foundations of Classical Statistical Mechanics
2.2 Statistical Ensembles in CSM:Micro-canonical Ensemble
2.3 Statistical Ensembles in CSM:Canonical and Grand-Canonial Ensembles
2.4 Response,Correlations and Fluctuations:I Classical
2A Harmonic Oscillators &Ergodicity
2B The Volume Phase Space for a Perfect Gas
2C Density-Density Correlation Function of a Perfect Gas
Problems
Chapter3 Spin Hamiltonians I:Classical
3.1 Spin Hamiltonians
3.2 Gaussian Identities for Spin Hamiltonians
3.3 Mean Field Theory and Phase Transitions
3.4 Linearized Spin ynamics:Spin Waves,Response and Correla-tions
3.5 SSE,Goldstone and Mermin-Wagner Theorems
3A Poisson Description of Spin Dynamics
3B Perturbation expansions and the Classical Analogue of Wick s Theorem
3C "Conventional"Mean Field Theory
3D Some Group-Theoretical Aspects Related to SSB
Problems
Chapter4 Equilibrium Quantum Statistical Mechanics
4.1 Resume of Quantum Mechanics
4.2 Foundations of Quantum Statistical Mechanics:Ensembles
4.3 Response,Correlations and FluctuationsII:Quantum
4A Two-level Systems
Chapter5 Identical Particles in Quantum Statistical Me-chanics
5.1 Statistics and Identical Particles in QSM
5.2 Fock Spaces & Second Quantization
5.3 Quantum Gases and Beyond
Prolems
Chapter6 Spin Hamiltonians II:Quantum
6.1 The Heisenberg Model Hamiltonian
6.2 Partition Function and Path Integrals
6.3 Mean-Field Approximations and SSB:ferro and Antiferro Mag-netism
Problems
Chapter7 Phase Transitions and Critical Phenomena
7.1 Introduction to Phase Transitions
……
Chapter8 Model Systems,Scaling Laws and Mean Field
Chapter9 Superfluids and Superfluidity
Chapter10 The Renormalizaton Group and Critical Phenomena
AppendixA Mathematical DigressionⅠ:Differentiable Manifolds and Exteror Calculus
AppendixB Mathematical DigressionⅡ:Some Mathematics of Hilbert Spaces
AppendixC Linear Stability Theory
AppendixD Eigenvalue and Eigenvector Problems for NonSymmetric Matrices
Bibliography
Index
作者:Morandi,G.等 著
出版时间:2005年版
内容简介
This is the second,revised and enlarged edition of a book on Statistical Mechanics whose first edition appeared in the year 1995.No doubt there ate many excellent books on Statistical Mechanics,ranging from classical ones (like Tolman's [152],Schrodinger's[132]and LandauLifshitz's[83],e.g.)to more modern ones.A partial list of them is contained in the Bibliography listed at the end of the book.……此书为英文版。
目录
Preface
Chapter1 Thermodynamics
1.1 A Recollection of Basic Notions in CLassical Thermodynamics
1.2 Thermodynamic Potentials,Stability Conditions
1.3 A Mathematical Digression:Integrating Factors and
1A Thermodynamics of Paramagnetic Bodies
1C Some Relations on Partial Derivatives & Jacoblans
1D A Digression on:Integrability Conditions
Problems
Chapter2 Equilibrium Classical Statistical Mechanics
2.1 Foundations of Classical Statistical Mechanics
2.2 Statistical Ensembles in CSM:Micro-canonical Ensemble
2.3 Statistical Ensembles in CSM:Canonical and Grand-Canonial Ensembles
2.4 Response,Correlations and Fluctuations:I Classical
2A Harmonic Oscillators &Ergodicity
2B The Volume Phase Space for a Perfect Gas
2C Density-Density Correlation Function of a Perfect Gas
Problems
Chapter3 Spin Hamiltonians I:Classical
3.1 Spin Hamiltonians
3.2 Gaussian Identities for Spin Hamiltonians
3.3 Mean Field Theory and Phase Transitions
3.4 Linearized Spin ynamics:Spin Waves,Response and Correla-tions
3.5 SSE,Goldstone and Mermin-Wagner Theorems
3A Poisson Description of Spin Dynamics
3B Perturbation expansions and the Classical Analogue of Wick s Theorem
3C "Conventional"Mean Field Theory
3D Some Group-Theoretical Aspects Related to SSB
Problems
Chapter4 Equilibrium Quantum Statistical Mechanics
4.1 Resume of Quantum Mechanics
4.2 Foundations of Quantum Statistical Mechanics:Ensembles
4.3 Response,Correlations and FluctuationsII:Quantum
4A Two-level Systems
Chapter5 Identical Particles in Quantum Statistical Me-chanics
5.1 Statistics and Identical Particles in QSM
5.2 Fock Spaces & Second Quantization
5.3 Quantum Gases and Beyond
Prolems
Chapter6 Spin Hamiltonians II:Quantum
6.1 The Heisenberg Model Hamiltonian
6.2 Partition Function and Path Integrals
6.3 Mean-Field Approximations and SSB:ferro and Antiferro Mag-netism
Problems
Chapter7 Phase Transitions and Critical Phenomena
7.1 Introduction to Phase Transitions
……
Chapter8 Model Systems,Scaling Laws and Mean Field
Chapter9 Superfluids and Superfluidity
Chapter10 The Renormalizaton Group and Critical Phenomena
AppendixA Mathematical DigressionⅠ:Differentiable Manifolds and Exteror Calculus
AppendixB Mathematical DigressionⅡ:Some Mathematics of Hilbert Spaces
AppendixC Linear Stability Theory
AppendixD Eigenvalue and Eigenvector Problems for NonSymmetric Matrices
Bibliography
Index