您当前的位置:首页 > 多体系统的量子理论 英文版 (加)扎勾斯凯(Zagoshin,A.M.) 著 2009年版 > 下载地址1
多体系统的量子理论 英文版 (加)扎勾斯凯(Zagoshin,A.M.) 著 2009年版
- 名 称:多体系统的量子理论 英文版 (加)扎勾斯凯(Zagoshin,A.M.) 著 2009年版 - 下载地址1
- 类 别:物理学书籍
- 下载地址:[下载地址1]
- 提 取 码:
- 浏览次数:3
新闻评论(共有 0 条评论) |
资料介绍
多体系统的量子理论 英文版
作者:(加)扎勾斯凯(Zagoshin,A.M.) 著
出版时间:2009年版
内容简介
This book grew out of lectures that I gave in the framework of a graduate course in quantum theory of many-body systems at the Applied Physics Department of Chalmers University of Technology and G6teborg University (Geteborg, Sweden)in the years 1992-1995. Its purpose is to give a compact and self-contained account of basic ideas and techniques of the theory from the "condensed matter" point of view. The book is addressed to graduate students with knowledge of standard quantum mechanics and statistical physics. (Hopefully, physicists working in other fields may also find it useful.)
目录
Preface
List of Tables
Basic Concepts
1.1 Introduction: Whys and Hows of Quantum Many-Body Theory
1.1.1 Screening of Coulomb Potential in Metal
1.1.2 Time-Dependent Effects. Plasmons
1.2 Propagation Function in a One-Body Quantum Theory
1.2.1 Propagator: Definition and Properties
1.2.2 Feynmans Formulation of Quantum Mechanics: Path (Functional) Integrals
1.2.3 Quantum Transport in Mesoscopic Rings: Path Integral Description
1.3 Perturbation Theory for the Propagator
1.3.1 General Formalism
1.3.2 An Example: Potential Scattering
1.4 Second Quantization
1.4.1Description of Large Collections of Identical Particles. Focks Space
1.4.2 Bosons
1.4.3 Number and Phase Operators and Their Uncertainty Relation
1.4.4 Fermions
1.5 Problems to Chapter 1
Greens Functions at Zero Temperature
2.1 Greens Function of The Many-Body System: Definition and Properties
2.1.1 Definition of Greens Functions of the Many-Body System
2.I.2 Analytic Properties of Greens Functions
2.1.3 Retarded and Advanced Greens Functions
2.1.4 Greens Function and Observables
2.2 Perturbation Theory: Feynman Diagrams
2.2.1Derivation of Feynman Rules. Wicks and Cancellation Theorems
2.2.2 Operations with Diagrams. Self Energy. Dysons Equation
2.2.3 Renormalization of the Interaction. Polarization Operator
2.2.4 Many-Particle Greens Functions.Bethe-Salpeter Equations. Vertex Function
2.3 Problems to Chapter 2
3 More Greens Functions, Equilibrium and Otherwise,and Their Applications
3. I Analytic Properties of Equilibrium Greens Functions
3.1.1 Statistical Operator (Density Matrix). The Liouville Equation
3.1.2 Definition and Analytic Properties of Equilibrium Greens Functions
3.2 Matsubara formalism
3.2.1 Blochs Equation
3.2.2 Temperature (Matsubara) Greens Function
3.2.3 Perturbation Series and Diagram Techniques for the Temperature Greens Function
3.3 Linear Response Theory
3.3.1 Linear Response Theory. Kubo Formulas
3.3.2 Fluctuation-Dissipation Theorem
3.4 Nonequilibrium Greens Functions
3.4.1Nonequilibrium causal Greens function: definition
3.4.2 Contour Ordering and Three More Nonequilibrium Greens Functions
3.4.3 The Keldysh Formalism
3.5 Quantum Kinetic Equation
3.5.1Dysons Equations for Nonequilibrium Greens Functions
3.5.2 The Quantum Kinetic Equation
3.6 Application: Electrical Conductivity of Quantum Point Contacts
3,6.1 Quantum Electrical Conductivity in the Elastic Limit
3.6.2 Elastic Resistance of a Point Contact: Sharvin Resistance, the Landauer Formula, and Conductance Quantization
3.6.3 The Electron-Phonon Collision Integral in 3 D Quantum Point Contact
3.6.4 "Calculation of the Inelastic Component of the Point Contact Current
3.7 Method of Tunneling Hamiltonian
3.8 Problems to Chapter 3
Methods of the Many-Body Theory in Superconductivity
4.1 Introduction: General Picture of the Superconducting State
4.2 Instability of the Normal State
4.3 Pairing (BCS) Hamiltonian
4.3.1 Derivation of the BCS Hamiltonian
4.3.2 Diagonalization of the BCS Hamiltonian. The Bogoliubov transformation. Bogoliubov-de Gennes Equations
4.3.3 Bogolons
4.3.4 Thermodynamic Potential of a Superconductor
4.4 Greens Functions of a Superconductor:The Nambu-Gorkov Formalism
4.4.1Matrix Structure of the Theory
4.4.2 Elements of the Strong Coupling Theory
4.4.3 Gorkovs Equations for the Greens Functions
4.4.4 Current-Carrying State of the Superconductor
4.4.5 Destruction of Superconductivity by Current
4.5 Andreev Reflection
4.5.1 The Proximity Effect in a Normal Metal in Contact With a Superconductor
4.5.2 Andreev Levels and Josephson Effect in a Clean SNS Junction
4.5.3 Josephson Current in a Short Ballistic Junction.Quantization of Critical Current
in Quantum Point Contact
4.5.4 Josephson Current in a Long SNS Junction
4.5.5 "Transport in Superconducting Quantum Point Contact: The Keldysh Formalism Approach
4.6 Tunneling of Single Electrons and Cooper Pairs
4.6.1Coulomb Blockade of Single-Electron Tunneling
4.6.2 Superconducting Grain: When One Electron Is Too Many.
4.7 Problems to Chapter 4
A Landauer Formalism for Hybrid Normal-Superconducting Structures
A. 1 The Landauer-Lambert formula
A.2 Giant Conductance Oscillations in Ballistic Andrecv
Interferometers
References
Index
作者:(加)扎勾斯凯(Zagoshin,A.M.) 著
出版时间:2009年版
内容简介
This book grew out of lectures that I gave in the framework of a graduate course in quantum theory of many-body systems at the Applied Physics Department of Chalmers University of Technology and G6teborg University (Geteborg, Sweden)in the years 1992-1995. Its purpose is to give a compact and self-contained account of basic ideas and techniques of the theory from the "condensed matter" point of view. The book is addressed to graduate students with knowledge of standard quantum mechanics and statistical physics. (Hopefully, physicists working in other fields may also find it useful.)
目录
Preface
List of Tables
Basic Concepts
1.1 Introduction: Whys and Hows of Quantum Many-Body Theory
1.1.1 Screening of Coulomb Potential in Metal
1.1.2 Time-Dependent Effects. Plasmons
1.2 Propagation Function in a One-Body Quantum Theory
1.2.1 Propagator: Definition and Properties
1.2.2 Feynmans Formulation of Quantum Mechanics: Path (Functional) Integrals
1.2.3 Quantum Transport in Mesoscopic Rings: Path Integral Description
1.3 Perturbation Theory for the Propagator
1.3.1 General Formalism
1.3.2 An Example: Potential Scattering
1.4 Second Quantization
1.4.1Description of Large Collections of Identical Particles. Focks Space
1.4.2 Bosons
1.4.3 Number and Phase Operators and Their Uncertainty Relation
1.4.4 Fermions
1.5 Problems to Chapter 1
Greens Functions at Zero Temperature
2.1 Greens Function of The Many-Body System: Definition and Properties
2.1.1 Definition of Greens Functions of the Many-Body System
2.I.2 Analytic Properties of Greens Functions
2.1.3 Retarded and Advanced Greens Functions
2.1.4 Greens Function and Observables
2.2 Perturbation Theory: Feynman Diagrams
2.2.1Derivation of Feynman Rules. Wicks and Cancellation Theorems
2.2.2 Operations with Diagrams. Self Energy. Dysons Equation
2.2.3 Renormalization of the Interaction. Polarization Operator
2.2.4 Many-Particle Greens Functions.Bethe-Salpeter Equations. Vertex Function
2.3 Problems to Chapter 2
3 More Greens Functions, Equilibrium and Otherwise,and Their Applications
3. I Analytic Properties of Equilibrium Greens Functions
3.1.1 Statistical Operator (Density Matrix). The Liouville Equation
3.1.2 Definition and Analytic Properties of Equilibrium Greens Functions
3.2 Matsubara formalism
3.2.1 Blochs Equation
3.2.2 Temperature (Matsubara) Greens Function
3.2.3 Perturbation Series and Diagram Techniques for the Temperature Greens Function
3.3 Linear Response Theory
3.3.1 Linear Response Theory. Kubo Formulas
3.3.2 Fluctuation-Dissipation Theorem
3.4 Nonequilibrium Greens Functions
3.4.1Nonequilibrium causal Greens function: definition
3.4.2 Contour Ordering and Three More Nonequilibrium Greens Functions
3.4.3 The Keldysh Formalism
3.5 Quantum Kinetic Equation
3.5.1Dysons Equations for Nonequilibrium Greens Functions
3.5.2 The Quantum Kinetic Equation
3.6 Application: Electrical Conductivity of Quantum Point Contacts
3,6.1 Quantum Electrical Conductivity in the Elastic Limit
3.6.2 Elastic Resistance of a Point Contact: Sharvin Resistance, the Landauer Formula, and Conductance Quantization
3.6.3 The Electron-Phonon Collision Integral in 3 D Quantum Point Contact
3.6.4 "Calculation of the Inelastic Component of the Point Contact Current
3.7 Method of Tunneling Hamiltonian
3.8 Problems to Chapter 3
Methods of the Many-Body Theory in Superconductivity
4.1 Introduction: General Picture of the Superconducting State
4.2 Instability of the Normal State
4.3 Pairing (BCS) Hamiltonian
4.3.1 Derivation of the BCS Hamiltonian
4.3.2 Diagonalization of the BCS Hamiltonian. The Bogoliubov transformation. Bogoliubov-de Gennes Equations
4.3.3 Bogolons
4.3.4 Thermodynamic Potential of a Superconductor
4.4 Greens Functions of a Superconductor:The Nambu-Gorkov Formalism
4.4.1Matrix Structure of the Theory
4.4.2 Elements of the Strong Coupling Theory
4.4.3 Gorkovs Equations for the Greens Functions
4.4.4 Current-Carrying State of the Superconductor
4.4.5 Destruction of Superconductivity by Current
4.5 Andreev Reflection
4.5.1 The Proximity Effect in a Normal Metal in Contact With a Superconductor
4.5.2 Andreev Levels and Josephson Effect in a Clean SNS Junction
4.5.3 Josephson Current in a Short Ballistic Junction.Quantization of Critical Current
in Quantum Point Contact
4.5.4 Josephson Current in a Long SNS Junction
4.5.5 "Transport in Superconducting Quantum Point Contact: The Keldysh Formalism Approach
4.6 Tunneling of Single Electrons and Cooper Pairs
4.6.1Coulomb Blockade of Single-Electron Tunneling
4.6.2 Superconducting Grain: When One Electron Is Too Many.
4.7 Problems to Chapter 4
A Landauer Formalism for Hybrid Normal-Superconducting Structures
A. 1 The Landauer-Lambert formula
A.2 Giant Conductance Oscillations in Ballistic Andrecv
Interferometers
References
Index
相关推荐
- 科学可以这样看丛书 量子纠缠 修订版 (英)布莱恩·克莱格 著 2018年版
- 现代大学物理(英文版)(美)沃尔夫冈·鲍尔,加里D.韦斯特福尔 著
- 大学物理实验教程 [吕金钟 编] 2012年版
- 大学物理学(简明版) [上海交通大学物理教研室组 编] 2013年版
- University Physics大学物理学 第5版 上册 [王少杰,顾牡,王祖源主编]
- 中外物理学精品书系 前沿系列 瞬变电磁场 理论和计算 [王长清,祝西里 主编] 2011年版
- 物理光学简明教程 顾宏 编著 2018年版
- 物理学(第6版)习题分析与解答
- 中等职业学校公共课教学用书 物理 通用类 [王正联主编]
- 物理化学学习指导 [李玉林,苏立,苏子义 主编] 2013年版