您当前的位置:首页 > 先进功能材料丛书·聚多糖纳米晶 化学与应用 英文版 > 下载地址2
先进功能材料丛书·聚多糖纳米晶 化学与应用 英文版
- 名 称:先进功能材料丛书·聚多糖纳米晶 化学与应用 英文版 - 下载地址2
- 类 别:材料书籍
- 下载地址:[下载地址2]
- 提 取 码:
- 浏览次数:3
新闻评论(共有 0 条评论) |
资料介绍
先进功能材料丛书·聚多糖纳米晶 化学与应用 英文版
出版时间:2015年版
丛编项: 先进功能材料丛书·聚多糖纳米晶
内容简介
《先进功能材料丛书·聚多糖纳米晶:化学与应用》采用简明的语言、丰富的数据图表,阐明了来自天然生物质资源的聚多糖纳米晶的提取、结构、性质、化学修饰、材料制备等方面的理论知识和实践经验,总结了聚多糖纳米晶改性材料功能化、高性能化的研究思路和技术方案。不仅包含作者在过去十年中以保护环境和降低石油消耗为目标,围绕可再生、可生物降解的聚多糖纳米晶发展成为高性能材料及功能材料的研究工作的凝练,同时涵盖了国内外同行的优秀研究成果。
《先进功能材料丛书·聚多糖纳米晶:化学与应用》主要包括纤维素纳米晶、甲壳素纳米晶及淀粉纳米晶的制备、化学和物理改性、纳米复合材料和功能材料构建的相关理论和技术等内容,并且对聚多糖纳米晶的理论研究体系建立、应用拓展及发展方向等进行了展望。
《先进功能材料丛书·聚多糖纳米晶:化学与应用》可供生物质化学与化工、高分子科学、环境科学、材料科学、农业化学、纳米科学与技术等相关专业的研究生学习使用,也可作为相关科研工作和工程技术人员的参考书。
目录
·List of Contributors XIII
Foreword XV
Preface XVII
1 Polysaccharide Nanocrystals: Current Status and Prospects in Materi
Science
Jin Huang, Peter R. Chang, and Alain Dufresne
1.1 Introduction to Polysaccharide Nanocrystals
1.2 Current Application of Polysaccharide Nanocrystals in Material
Science
1.3 Prospects for Polysaccharide Nanocrystal-Based Materials
List of Abbreviations
References
2 Structure and Properties of Polysaccharide Nanocrystals
Fei Hu, Shiyu Fu, Jin Huang, Debbie P. Anderson, and Peter R. Chang
2.1 Introduction
2.2 Cellulose Nanocrystals
2.2.1 Preparation of Cellulose Nanocrystals
2.2.1.1 Acid Hydrolysis Extraction of Cellulose Nanocrystals
2.2.1.2 Eects of Acid Type
2.2.1.3 Eects of Pretreatment
2.2.2 Structure and Properties of Cellulose Nanocrystals
2.2.2.1 Structure and Rigidity of Cellulose Nanocrystals
2.2.2.2 Physical Properties of Cellulose Nanocrystals
2.3 Chitin Nanocrystals
2.3.1 Preparation of Chitin Nanocrystals
2.3.1.1 Extraction of Chitin Nanocrystals by Acid Hydrolysis
2.3.1.2 Extraction of Chitin Nanocrystals by TEMPO Oxidation
2.3.2 Structure and Properties of Chitin Nanocrystals
2.3.2.1 Structure and Rigidity of Chitin Nanocrystals
2.3.2.2 Properties of Chitin Nanocrystal Suspensions
2.4 Starch Nanocrystals
2.4.1 Preparation of Starch Nanocrystals
2.4.1.1 Extraction of Starch Nanocrystals by Acid Hydrolysis
2.4.1.2 Eect of Ultrasonic Treatment
2.4.1.3 Eect of Pretreatment
2.4.2 Structure and Properties of Starch Nanocrystals
2.4.2.1 Structure of Starch Nanocrystals
2.4.2.2 Properties of Starch Nanocrystal Suspensions
2.5 Conclusion and Prospects
List of Abbreviations
References
3 Surface Modication of Polysaccharide Nanocrystals
Ning Lin and Alain Dufresne
3.1 Introduction
3.2 Surface Chemistry of Polysaccharide Nanocrystals
3.2.1 Surface Hydroxyl Groups
3.2.2 Surface Groups Originating from Various Extraction Methods
3.3 Approaches and Strategies for Surface Modication
3.3.1 Purpose and Challenge of Surface Modication
3.3.2 Comparison of Dierent Approaches and Strategies of Surface Modication
3.4 Adsorption of Surfactant
3.4.1 Anionic Surfactant
3.4.2 Cationic Surfactant
3.4.3 Nonionic Surfactant
3.5 Hydrophobic Groups Resulting from Chemical Derivatization
3.5.1 Acetyl and Ester Groups with Acetylation and Esterication
3.5.2 Carboxyl Groups Resulting from TEMPO-Mediated Oxidation
3.5.3 Derivatization with Isocyanate Carboamination
3.5.4 Silyl Groups Resulting from Silylation
3.5.5 Cationic Groups Resulting from Cationization
3.6 Polymeric Chains from Physical Absorption or Chemical Grafting
3.6.1 Hydrophilic Polymer
3.6.2 Polyester
3.6.3 Polyolen
3.6.4 Block Copolymer
3.6.5 Polyurethane andWaterborne Polyurethane
3.6.6 Other Hydrophobic Polymer
3.7 Advanced Functional Groups and Modication
3.7.1 Fluorescent and Dye Molecules
3.7.2 Amino Acid and DNA
3.7.3 Self-Cross-linking of Polysaccharide Nanocrystals
3.7.4 Photobactericidal Porphyrin Molecule
3.7.5 Imidazolium Molecule
3.7.6 Cyclodextrin Molecule and Pluronic Polymer
3.8 Concluding Remarks
List of Abbreviations
References
4 Preparation of Polysaccharide Nanocrystal-Based Nanocomposites
Hou-Yong Yu, Jin Huang, Youli Chen, and Peter R. Chang
4.1 Introduction
4.2 Casting/Evaporation Processing
4.2.1 Solution Casting/Evaporation Processing
4.2.2 Solution Casting in Aqueous Medium
4.2.2.1 Dispersion Stability of Polysaccharide Nanocrystals in Aqueous
Medium
4.2.2.2 Blending with Hydrophilic Polymers
4.2.2.3 Blending with Hydrophobic Polymers
4.2.3 Solution Casting in Organic Medium
4.2.3.1 Dispersion Stability of Polysaccharide Nanocrystals in Organic Medium
4.2.3.2 Blending with Polymers in Organic Solvent
4.3 hermoprocessing Methods
4.3.1 hermoplastic Materials Modied with Polysaccharide
Nanocrystals
4.3.2 Inuence of Surface Modication of Polysaccharide Nanocrystals on
Nanocompositehermoprocessing
4.4 Preparation of Nanobers by Electrospinning Technology
4.4.1 Electrospinning Technology
4.4.1.1 Concepts
4.4.1.2 Formation Process of Nanobers
4.4.1.3 Basic Electrospinning Parameters and Devices
4.4.1.4 Newly Emerging Electrospinning Techniques
4.4.2 Nanocomposite Nanobers Filled with Polysaccharide
Nanocrystals
4.4.2.1 Electrospun Nanobers in Aqueous Medium
4.4.2.2 Electrospun Nanobers in Non-aqueous Medium
4.5 Sol-Gel Method
4.5.1 Concepts of Sol-Gel Process
4.5.2 Polysaccharide Nanocrystal-Based or -Derived Nanocomposites
Prepared by Sol-GelMethod
4.5.3 Chiral Nanocomposites Using Cellulose Nanocrystal Template
4.5.3.1 Inorganic Chiral Materials Based on Cellulose Nanocrystal
Template
4.5.3.2 Chiral Porous Materials
4.5.3.3 Chiral Porous Carbon Materials
4.5.3.4 Metal Nanoparticle-Decorated Chiral Nematic Materials
4.6 Self-Assembly Method
4.6.1 Overview of Self-Assembly Method
4.6.2 Self-Assembly Method Toward Polysaccharide
Nanocrystal-Modied Materials
4.6.2.1 Self-Assembly of Polysaccharide Nanocrystals in Aqueous
Medium
4.6.2.2 Self-Assembly of Polysaccharide Nanocrystals in Organic
Medium
4.6.2.3 Self-Assembly of Polysaccharide Nanocrystals in Solid Film
4.6.3 Polysaccharide Nanocrystal-Modied Materials Prepared by LBL
Method
4.7 Other Methods and Prospects
List of Abbreviations
References
5 Polysaccharide Nanocrystal-Reinforced Nanocomposites
Hanieh Kargarzadeh and Ishak Ahmad
5.1 Introduction
5.2 Rubber-Based Nanocomposites
5.3 Polyolen-Based Nanocomposites
5.4 Polyurethane andWaterborne Polyurethane-Based
Nanocomposites
5.5 Polyester-Based Nanocomposites
5.6 Starch-Based Nanocomposites
5.7 Protein-Based Nanocomposites
5.8 Concluding Remarks
List of Abbreviations
References
6 Polysaccharide Nanocrystals-Based Materials for Advanced
Applications
Ning Lin, Jin Huang, and Alain Dufresne
6.1 Introduction
6.2 Surface Characteristics Induced Functional Nanomaterials
6.2.1 Active Groups
6.2.1.1 Importing Functional Groups or Molecules
6.2.1.2 Template for Synthesizing Inorganic Nanoparticles
6.2.2 Surface Charges and Hydrophilicity
6.2.2.1 Emulsion Nanostabilizer
6.2.2.2 High-Eciency Adsorption
6.2.2.3 Permselective Membrane
6.2.3 Nanoscale and High Surface Area
6.2.3.1 Surface Cell Cultivation
6.2.3.2 Water Decontamination
6.3 Nano-Reinforcing Eects in Functional Nanomaterials
6.3.1 Soft Matter
6.3.1.1 Hydrogel
6.3.1.2 Sponge, Foam, Aerogel, and Tissue-Engineering Nanosca?old
6.3.2 Special Mechanical Materials
6.3.3 Self-Healable and Shape-Memory Materials
6.3.4 Polymeric Electrolytes and Battery
6.3.5 Semi-conducting Material
6.4 Optical Materials Derived from Liquid Crystalline Property
6.5 Special Films and Systems Ascribed to Barrier Property
6.5.1 Drug Delivery - Barrier for Drug Molecules
6.5.2 Barrier Nanocomposites - Barrier forWater and Oxygen
6.6 Other Functional Applications
6.7 Concluding Remarks
List of Abbreviations
References
7 Characterization of Polysaccharide Nanocrystal-Based Materials
Alain Dufresne and Ning Lin
7.1 Introduction
7.2 Mechanical Properties of Polysaccharide Nanocrystals
7.2.1 Intrinsic Mechanical Properties of Polysaccharide
Nanocrystals
7.2.2 Mechanical Properties of Polysaccharide Nanocrystal Films
7.3 Dispersion of Polysaccharide Nanocrystals
7.3.1 Observation of Polysaccharide Nanocrystals in Matrix
7.3.2 hree-Dimensional Network of Polysaccharide Nanocrystals
7.4 Mechanical Properties of Polysaccharide Nanocrystal-Based
Materials
7.4.1 Inuence of the Morphology and Dimensions of the
Nanocrystals
7.4.2 Inuence of the Processing Method
7.5 Polysaccharide Nanocrystal/Matrix Interfacial Interactions
7.6 hermal Properties of Polysaccharide Nanocrystal-Based
Materials
7.6.1 hermal Properties of Polysaccharide Nanocrystals
7.6.2 Glass Transition of Polysaccharide Nanocrystal-Based
Nanocomposites
7.6.3 Melting/Crystallization Temperature of Polysaccharide
Nanocrystal-Based Nanocomposites
7.6.4 hermal Stability of Polysaccharide Nanocrystal-Based
Nanocomposites
7.7 Barrier Properties of Polysaccharide Nanocrystal-Based
Materials
7.7.1 Barrier Properties of Polysaccharide Nanocrystal Films
7.7.2 Swelling and Sorption Properties of Polysaccharide
Nanocrystal-Based Nanocomposites
7.7.3 Water Vapor Transfer and Permeability of Polysaccharide
Nanocrystal-Based Nanocomposites
7.7.4 Gas Permeability of Polysaccharide Nanocrystal-Based
Nanocomposites
7.8 Concluding Remarks
List of Abbreviations
References
Index
出版时间:2015年版
丛编项: 先进功能材料丛书·聚多糖纳米晶
内容简介
《先进功能材料丛书·聚多糖纳米晶:化学与应用》采用简明的语言、丰富的数据图表,阐明了来自天然生物质资源的聚多糖纳米晶的提取、结构、性质、化学修饰、材料制备等方面的理论知识和实践经验,总结了聚多糖纳米晶改性材料功能化、高性能化的研究思路和技术方案。不仅包含作者在过去十年中以保护环境和降低石油消耗为目标,围绕可再生、可生物降解的聚多糖纳米晶发展成为高性能材料及功能材料的研究工作的凝练,同时涵盖了国内外同行的优秀研究成果。
《先进功能材料丛书·聚多糖纳米晶:化学与应用》主要包括纤维素纳米晶、甲壳素纳米晶及淀粉纳米晶的制备、化学和物理改性、纳米复合材料和功能材料构建的相关理论和技术等内容,并且对聚多糖纳米晶的理论研究体系建立、应用拓展及发展方向等进行了展望。
《先进功能材料丛书·聚多糖纳米晶:化学与应用》可供生物质化学与化工、高分子科学、环境科学、材料科学、农业化学、纳米科学与技术等相关专业的研究生学习使用,也可作为相关科研工作和工程技术人员的参考书。
目录
·List of Contributors XIII
Foreword XV
Preface XVII
1 Polysaccharide Nanocrystals: Current Status and Prospects in Materi
Science
Jin Huang, Peter R. Chang, and Alain Dufresne
1.1 Introduction to Polysaccharide Nanocrystals
1.2 Current Application of Polysaccharide Nanocrystals in Material
Science
1.3 Prospects for Polysaccharide Nanocrystal-Based Materials
List of Abbreviations
References
2 Structure and Properties of Polysaccharide Nanocrystals
Fei Hu, Shiyu Fu, Jin Huang, Debbie P. Anderson, and Peter R. Chang
2.1 Introduction
2.2 Cellulose Nanocrystals
2.2.1 Preparation of Cellulose Nanocrystals
2.2.1.1 Acid Hydrolysis Extraction of Cellulose Nanocrystals
2.2.1.2 Eects of Acid Type
2.2.1.3 Eects of Pretreatment
2.2.2 Structure and Properties of Cellulose Nanocrystals
2.2.2.1 Structure and Rigidity of Cellulose Nanocrystals
2.2.2.2 Physical Properties of Cellulose Nanocrystals
2.3 Chitin Nanocrystals
2.3.1 Preparation of Chitin Nanocrystals
2.3.1.1 Extraction of Chitin Nanocrystals by Acid Hydrolysis
2.3.1.2 Extraction of Chitin Nanocrystals by TEMPO Oxidation
2.3.2 Structure and Properties of Chitin Nanocrystals
2.3.2.1 Structure and Rigidity of Chitin Nanocrystals
2.3.2.2 Properties of Chitin Nanocrystal Suspensions
2.4 Starch Nanocrystals
2.4.1 Preparation of Starch Nanocrystals
2.4.1.1 Extraction of Starch Nanocrystals by Acid Hydrolysis
2.4.1.2 Eect of Ultrasonic Treatment
2.4.1.3 Eect of Pretreatment
2.4.2 Structure and Properties of Starch Nanocrystals
2.4.2.1 Structure of Starch Nanocrystals
2.4.2.2 Properties of Starch Nanocrystal Suspensions
2.5 Conclusion and Prospects
List of Abbreviations
References
3 Surface Modication of Polysaccharide Nanocrystals
Ning Lin and Alain Dufresne
3.1 Introduction
3.2 Surface Chemistry of Polysaccharide Nanocrystals
3.2.1 Surface Hydroxyl Groups
3.2.2 Surface Groups Originating from Various Extraction Methods
3.3 Approaches and Strategies for Surface Modication
3.3.1 Purpose and Challenge of Surface Modication
3.3.2 Comparison of Dierent Approaches and Strategies of Surface Modication
3.4 Adsorption of Surfactant
3.4.1 Anionic Surfactant
3.4.2 Cationic Surfactant
3.4.3 Nonionic Surfactant
3.5 Hydrophobic Groups Resulting from Chemical Derivatization
3.5.1 Acetyl and Ester Groups with Acetylation and Esterication
3.5.2 Carboxyl Groups Resulting from TEMPO-Mediated Oxidation
3.5.3 Derivatization with Isocyanate Carboamination
3.5.4 Silyl Groups Resulting from Silylation
3.5.5 Cationic Groups Resulting from Cationization
3.6 Polymeric Chains from Physical Absorption or Chemical Grafting
3.6.1 Hydrophilic Polymer
3.6.2 Polyester
3.6.3 Polyolen
3.6.4 Block Copolymer
3.6.5 Polyurethane andWaterborne Polyurethane
3.6.6 Other Hydrophobic Polymer
3.7 Advanced Functional Groups and Modication
3.7.1 Fluorescent and Dye Molecules
3.7.2 Amino Acid and DNA
3.7.3 Self-Cross-linking of Polysaccharide Nanocrystals
3.7.4 Photobactericidal Porphyrin Molecule
3.7.5 Imidazolium Molecule
3.7.6 Cyclodextrin Molecule and Pluronic Polymer
3.8 Concluding Remarks
List of Abbreviations
References
4 Preparation of Polysaccharide Nanocrystal-Based Nanocomposites
Hou-Yong Yu, Jin Huang, Youli Chen, and Peter R. Chang
4.1 Introduction
4.2 Casting/Evaporation Processing
4.2.1 Solution Casting/Evaporation Processing
4.2.2 Solution Casting in Aqueous Medium
4.2.2.1 Dispersion Stability of Polysaccharide Nanocrystals in Aqueous
Medium
4.2.2.2 Blending with Hydrophilic Polymers
4.2.2.3 Blending with Hydrophobic Polymers
4.2.3 Solution Casting in Organic Medium
4.2.3.1 Dispersion Stability of Polysaccharide Nanocrystals in Organic Medium
4.2.3.2 Blending with Polymers in Organic Solvent
4.3 hermoprocessing Methods
4.3.1 hermoplastic Materials Modied with Polysaccharide
Nanocrystals
4.3.2 Inuence of Surface Modication of Polysaccharide Nanocrystals on
Nanocompositehermoprocessing
4.4 Preparation of Nanobers by Electrospinning Technology
4.4.1 Electrospinning Technology
4.4.1.1 Concepts
4.4.1.2 Formation Process of Nanobers
4.4.1.3 Basic Electrospinning Parameters and Devices
4.4.1.4 Newly Emerging Electrospinning Techniques
4.4.2 Nanocomposite Nanobers Filled with Polysaccharide
Nanocrystals
4.4.2.1 Electrospun Nanobers in Aqueous Medium
4.4.2.2 Electrospun Nanobers in Non-aqueous Medium
4.5 Sol-Gel Method
4.5.1 Concepts of Sol-Gel Process
4.5.2 Polysaccharide Nanocrystal-Based or -Derived Nanocomposites
Prepared by Sol-GelMethod
4.5.3 Chiral Nanocomposites Using Cellulose Nanocrystal Template
4.5.3.1 Inorganic Chiral Materials Based on Cellulose Nanocrystal
Template
4.5.3.2 Chiral Porous Materials
4.5.3.3 Chiral Porous Carbon Materials
4.5.3.4 Metal Nanoparticle-Decorated Chiral Nematic Materials
4.6 Self-Assembly Method
4.6.1 Overview of Self-Assembly Method
4.6.2 Self-Assembly Method Toward Polysaccharide
Nanocrystal-Modied Materials
4.6.2.1 Self-Assembly of Polysaccharide Nanocrystals in Aqueous
Medium
4.6.2.2 Self-Assembly of Polysaccharide Nanocrystals in Organic
Medium
4.6.2.3 Self-Assembly of Polysaccharide Nanocrystals in Solid Film
4.6.3 Polysaccharide Nanocrystal-Modied Materials Prepared by LBL
Method
4.7 Other Methods and Prospects
List of Abbreviations
References
5 Polysaccharide Nanocrystal-Reinforced Nanocomposites
Hanieh Kargarzadeh and Ishak Ahmad
5.1 Introduction
5.2 Rubber-Based Nanocomposites
5.3 Polyolen-Based Nanocomposites
5.4 Polyurethane andWaterborne Polyurethane-Based
Nanocomposites
5.5 Polyester-Based Nanocomposites
5.6 Starch-Based Nanocomposites
5.7 Protein-Based Nanocomposites
5.8 Concluding Remarks
List of Abbreviations
References
6 Polysaccharide Nanocrystals-Based Materials for Advanced
Applications
Ning Lin, Jin Huang, and Alain Dufresne
6.1 Introduction
6.2 Surface Characteristics Induced Functional Nanomaterials
6.2.1 Active Groups
6.2.1.1 Importing Functional Groups or Molecules
6.2.1.2 Template for Synthesizing Inorganic Nanoparticles
6.2.2 Surface Charges and Hydrophilicity
6.2.2.1 Emulsion Nanostabilizer
6.2.2.2 High-Eciency Adsorption
6.2.2.3 Permselective Membrane
6.2.3 Nanoscale and High Surface Area
6.2.3.1 Surface Cell Cultivation
6.2.3.2 Water Decontamination
6.3 Nano-Reinforcing Eects in Functional Nanomaterials
6.3.1 Soft Matter
6.3.1.1 Hydrogel
6.3.1.2 Sponge, Foam, Aerogel, and Tissue-Engineering Nanosca?old
6.3.2 Special Mechanical Materials
6.3.3 Self-Healable and Shape-Memory Materials
6.3.4 Polymeric Electrolytes and Battery
6.3.5 Semi-conducting Material
6.4 Optical Materials Derived from Liquid Crystalline Property
6.5 Special Films and Systems Ascribed to Barrier Property
6.5.1 Drug Delivery - Barrier for Drug Molecules
6.5.2 Barrier Nanocomposites - Barrier forWater and Oxygen
6.6 Other Functional Applications
6.7 Concluding Remarks
List of Abbreviations
References
7 Characterization of Polysaccharide Nanocrystal-Based Materials
Alain Dufresne and Ning Lin
7.1 Introduction
7.2 Mechanical Properties of Polysaccharide Nanocrystals
7.2.1 Intrinsic Mechanical Properties of Polysaccharide
Nanocrystals
7.2.2 Mechanical Properties of Polysaccharide Nanocrystal Films
7.3 Dispersion of Polysaccharide Nanocrystals
7.3.1 Observation of Polysaccharide Nanocrystals in Matrix
7.3.2 hree-Dimensional Network of Polysaccharide Nanocrystals
7.4 Mechanical Properties of Polysaccharide Nanocrystal-Based
Materials
7.4.1 Inuence of the Morphology and Dimensions of the
Nanocrystals
7.4.2 Inuence of the Processing Method
7.5 Polysaccharide Nanocrystal/Matrix Interfacial Interactions
7.6 hermal Properties of Polysaccharide Nanocrystal-Based
Materials
7.6.1 hermal Properties of Polysaccharide Nanocrystals
7.6.2 Glass Transition of Polysaccharide Nanocrystal-Based
Nanocomposites
7.6.3 Melting/Crystallization Temperature of Polysaccharide
Nanocrystal-Based Nanocomposites
7.6.4 hermal Stability of Polysaccharide Nanocrystal-Based
Nanocomposites
7.7 Barrier Properties of Polysaccharide Nanocrystal-Based
Materials
7.7.1 Barrier Properties of Polysaccharide Nanocrystal Films
7.7.2 Swelling and Sorption Properties of Polysaccharide
Nanocrystal-Based Nanocomposites
7.7.3 Water Vapor Transfer and Permeability of Polysaccharide
Nanocrystal-Based Nanocomposites
7.7.4 Gas Permeability of Polysaccharide Nanocrystal-Based
Nanocomposites
7.8 Concluding Remarks
List of Abbreviations
References
Index
下一篇: 金属基复合材料设计与制备 表象学研究
上一篇: 晶态纳米碳基材料的制备与电容储能应用