网站地图 | Tags | 热门标准 | 最新标准 | 订阅
您当前的位置:首页 > 伽罗瓦上同调(英文版) > 下载地址1

伽罗瓦上同调(英文版)

  • 名  称:伽罗瓦上同调(英文版) - 下载地址1
  • 类  别:数学书籍
  • 下载地址:[下载地址1]
  • 提 取 码ei0f
  • 浏览次数:3
下载帮助: 发表评论 加入收藏夹 错误报告目录
发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表
新闻评论(共有 0 条评论)

资料介绍

伽罗瓦上同调(英文版)
出版时间:2014年版
内容简介
  这本《伽罗瓦上同调》由(法)塞尔著,本书是一部译自法语的讲述伽罗瓦上同调的经典专著。经过30年的读者检验,好评不断,故此再次引进出版,将经典再现。书中增加了R.Steinberg的一份很成熟的论文,一些新的资料和扩展的参考文献。这些都使得这本书的内容更加充实。读者对象:数学专业的研究生和科研人员。
目  录
Foreword
Chapter I. Cohomology of proflnite groups
1. Proflnite groups
1.1 Definition
1.2 Subgroups
1.3 Indices
1.4 Pro-p-groups and Sylow p-subgroups
1.5 Pro-p-groups
2. Cohomology
2.1 Discrete G-modules
2.2 Cochains, cocycles, cohomology
2.3 Low dimensions
2.4 Functoriality
2.5 Induced modules
2.6 Complements
3. Cohomological dimension
3.1 p-cohomological dimension
3.2 Strict cohomological dimension
3.3 Cohomological dimension of subgroups and extensions
3.4 Characterization of the profinite groups G such that cdp(G) < 1
3.5 Dualizing modules
4. Cohomology of pro-p-groups
4.1 Simple modules
4.2 Interpretation of H1: generators
4.3 Interpretation of H2: relations
4.4 A theorem of Shafarevich
4.5 Poincare groups
5. Nonabelian cohomology
5.1 Definition of H~ and of H1
5.2 Principal homogeneous spaces over A - a new definition of
H1(G,A)
5.3 Twisting
5.4 The cohomology exact sequence associated to a subgroup
5.5 Cohomology exact sequence associated to a normal subgroup
5.6 The case of an abelian normal subgroup
5.7 The case of a central subgroup
5.8 Complements
5.9 A property of groups with cohomological dimension _< 1
Bibliographic remarks for Chapter I
Appendix 1. J. Tate - Some duality theorems
Appendix 2. The Golod-Shafarevich inequality
1. The statement
2. Proof
Chapter II. Gaiois cohomology, the commutative case
1. Generalities
1.1 Galois cohomology
1.2 First examples
2. Criteria for cohomological dimension
2.1 An auxiliary result
2.2 Case when p is equal to the characteristic
2.3 Case when p differs from the characteristic
3. Fields of dimension _<1
3.1 Definition
3.2 Relation with the property (C1)
3.3 Examples of fields of dimension _< 1
4. Transition theorems
4.1 Algebraic extensions
4.2 Transcendental extensions
4.3 Local fields
4.4 Cohomological dimension of the Galois group of an algebraic
number field
4.5 Property (Cr)
5. p-adic fields
5.1 Summary of known results
5.2 Cohomology of finite Gk-modulea
5.3 First applications
5.4 The Euler-Poincare characteristic (elementary case)
5.5 Unramified cohomology
5.6 The Galois group of the maximal p-extension of k
5.7 Euler-Poincar6 characteristics
5.8 Groups of multiplicative type
6. Algebraic number fields
6.1 Finite modules - definition of the groups Pt(k, A)
6.2 The finiteness theorem
6.3 Statements of the theorems of Poitou and ~te
Bibliographic remarks for Chapter II
Appendix. Gaiols cohomology of purely transcendental extensions
1. An exact sequence
2. The local case
3. Algebraic curves and function fields in one variable
4. The case K = k(T)
5. Notation
6. Killing by base change
7. Manin conditions, weak approximation
and Schinzel's hypothesis
8. Sieve bounds
Chapter III. Nonabelian Galols cohomology
1. Forms
1.1 Tensors
1.2 Examples
1.3 Varieties, algebraic groups, etc
1.4 Example: the k-forms of the group SLn
2. Fields of dimension _< 1
2.1 Linear groups: summary of known results
2.2 Vanishing of H1 for connected linear groups
2.3 Steinberg's theorem
2.4 Rational points on homogeneous spaces
3. Fields of dimension _< 2
3.1 Conjecture II
3.2 Examples
4. Finiteness theorems
4.1 Condition (F)
4.2 Fields of type (F)
4.3 Finiteness of the cohomology of linear groups
4.4 Finiteness of orbits
4.5 The case k = R
4.6 Algebraic number fields (Borel's theorem)
4.? A counter-example to the "Hasse principle"
Bibliographic remarks for Chapter III
Appendix 1. Regular elements of semisimple groups (by R. Steinberg)
1. Introduction and statement of results
2. Some recollections
3. Some characterizations of regular elements
4. The existence of regular unipotent elements
5. Irregular elements
6. Class functions and the variety of regular classes
7. Structure of N
8. Proof of 1.4 and 1.5
9. Rationality of N
10. Some cohomological applications
11. Added in proof
Appendix 2. Complements on Galois cohomology
1. Notation
2. The orthogonal case
3. Applications and examples
4. Injectivity problems
5. The trace form
6. Bayer-Lenstra theory: self-dual normal bases
7. Negligible cohomology classes
Bibliography
Index


下载排行 | 下载帮助 | 下载声明 | 信息反馈 | 网站地图  360book | 联系我们谢谢