熵大偏差和统计力学(英文影印版) 出版时间:2011年版 内容简介 《熵、大偏差和统计力学》是一部教程,内容上相对独立,自成体系。书中大偏差的讲述除了为这科目做出了巨大贡献,也将统计力学的好多方面完美结合,并且很具有数学吸引力。而且作者在没有假设读者具有丰富的物理知识背景下讲述,使得本书能够让更多的读者学习理解。每章末都附有一节注解和一节问题,这100来道练习题,附有许多提示,使得本书更加易于学习理解。目次:(第一部分)大偏差和统计力学:大偏差导论;大偏差性质和积分渐近;大偏差和离散理想气体;z上的铁磁模型;zd和圆周上的磁模型;(第二部分)大偏差定理上的复杂度和证明:复函数和legendre-fenchel变换;大偏差的随机向量;i. i. d.随机变量的2级大偏差;i. i. d.随机变量的3级大偏差;附录:概率论;ii.7中两个定理的证明;自旋系统中无限体积测度的等价观点;特殊gibbs自由能量的存在性。读者对象:数学专业的研究生,教师和相关专业的科研人员。 目录 preface comments on the use of this book part i: large deviations and statistical mechanics chapter i. introduction to large deviations i.1. overview i.2. large deviations for 1.i.d. random variables with afinite state space i.3. levels-1 and 2 for coin tossing i.4. levels-1 and 2 for i.i.d. random variables with afinite state space i.5. level-3: empirical pair measure i.6. level-3: empirical process i.7. notes i.8. problems chapter ii. large deviation property and asymptotics ofintegrals ii.1. introduction ii.2. levels-l, 2, and 3 large deviations for i.i.d. randomvectors ii.3. the definition of large deviation property ii.4. statement of large deviation properties for levels-l,2, and 3 ii.5. contraction principles ii.6. large deviation property for random vectors andexponential convergence ii.7. varadhan's theorem on the asymptotics ofintegrals ii.8. notes ii.9. problems chapter iii. large deviations and the discrete ideal gas iii.1. introduction iii.2. physics prelude: thermodynamics iii.3. the discrete ideal gas and the microcanonicalensemble iii.4. thermodynamic limit, exponential convergence, andequilibrium values iii.5. the maxweli-boltzmann distribution andtemperature iii.6. the canonical ensemble and its equivalence with themicrocanonical ensemble iii.7. a derivation of a thermodynamic equation ill.8. the gibbs variational formula and principle iii.9. notes iii. 10. problems chapter iv. ferromagnetic models on z iv.1. introduction iv.2. an overview of ferromagnetic models iv.3. finite-volume gibbs states on 77 iv.4. spontaneous magnetization for the curie-weissmodel iv.5. spontaneous magnetization for general ferromagnetson iv.6. infinite-volume gibbs states and phasetransitions iv.7. the gibbs variational formula and principle iv.8. notes iv.9. problems chapter v. magnetic models on 7/d and on the circle v.1. introduction v.2. finite-volume gibbs states on zd, d ≥ 1 v.3. moment inequalities v.4. properties of the magnetization and the gibbs freeenergy v.5. spontaneous magnetization on z, d ≥ 2, via the peierlsargument v.6. infinite-volume gibbs states and phasetransitions v.7. infinite-volume gibbs states and the central limittheorem v.8. critical phenomena and the breakdown of the centrallimit theorem v.9. three faces of the curie-weiss model v. 10. the circle model and random waves v.11. a postscript on magnetic models v.12. notes v.13. problems part ii: convexity and proofs of large deviation theorems chapter vi. convex functions and the legendre-fencheltransform vii.1. introduction vi.2. basic definitions vi.3. properties of convex functions vi.4. a one-dimensional example pf the legendre-fencheltransform vi.5. the legendre-fenchel transform for convex functions onra vi.6. notes vi.7. problems chapter vii. large deviations for random vectors vii. i. statement of results vii.2. properties of i vii.3. proof of the large deviation bounds for d = 1 vii.4. proof of the large deviation bounds for d≥ 1 vii.5. level-i large deviations for i.i.d. randomvectors vii.6. exponential convergence and proof of theoremii.6.3 vii.7. notes vii.8. problems chapter viii. level-2 large deviations for i.i.d. randomvectors viii. 1. introduction viii.2. the level-2 large deviation theorem viii.3. the contraction principle relating levels-i and 2 (d= 1) viii.4. the contraction principle relating levels-1 and 2 (d≥ 2) viii.5. notes viii.6. problems chapter ix. level-3 large deviations for i.i.d. randomvectors ix. 1. statement of results ix.2. properties of the level-3 entropy function ix.3. contraction principles ix.4. proof of the level-3 large deviation bounds ix.5. notes ix.6. problems appendices appendix a: probability a.1. introduction a.2. measurability a.3. product spaces a.4. probability measures and expectation a.5. convergence of random vectors a.6. conditional expectation, conditional probability, andregular conditional distribution a.7. the koimogorov existence theorem a.8. weak convergence of probability measures on a metricspace a.9. the space ms((rd)z) and the ergodic theorem a.10. n-dependent markov chains a.11. probability measures on the space { 1, - 1}zd appendix b: proofs of two theorems in section ii.7 b.i. proof of theorem ii.7.1 b.2. proof of theorem ii.7.2 appendix c: equivalent notions of infinite-volume measures for spinsystems c.i. introduction c.2. two-body interactions and infinite-volume gibbsstates c.3. many-body interactions and infinite-volume gibbsstates c.4. dlr states c.5. the gibbs variational formula and principle c.6. solution of the gibbs variational formula forfinite-range interactions on z appendix d: existence of the specific gibbs free energy d.1. existence along hypercubes d.2. an extension list of frequently used symbols references author index subject index
上一篇: 实验力学 [尹协振,续伯钦,张寒虹 编著] 2012年版
下一篇: 热学、热力学与统计物理(下册 第二版)
|