时空视频检索(英文版) 出版时间:2010年版 内容简介 《时空视频检索》重点挖掘了视频的时空关系,探索了利用机器学习的方法进行视频切割、语义分类。《时空视频检索》分七章,阐明了图像的各种特性,论述了视频的特征,系统介绍了视频的时空逻辑关系、视频的统计分析方法,研究了如何捕捉视频的时空特性,如何利用人工智能神经网络进行视频切割,如何训练计算机“学会”用人类的思维进行视频语义分类、检索。各章节撰写排列体现了从简到繁、由浅入深、从理论到实际、从技术到系统的特点。《时空视频检索》可以作为高等学校信号与图像处理、计算机科学、机器学习、人工智能、机器视觉等领域的研究生教材和参考书,也可以作为在这些领域从事相关工作的高级科学技术人员的参考书。 目录 Chapter Ⅰ Introduction 1.1 Motivation 1.2 Proposed Solution 1.3 Structure of Book Chapter Ⅱ Approaches to Video Retrieval 2.1 Introduction 2.2 Video Structure and Properties 2.3 Query 2.4 Similarity Metrics 2.5 Performance Evaluation Metrics 2.6 Systems Chapter Ⅲ Spatio-temporal Image and Video Analysis 3.1 Spatio-temporal Information for Video Retrieval 3.2 Spatial Information Modelling in Multimedia Retrieval . 3.3 Temporal Model 3.4 Spatio-temporal Information Fusion Chapter Ⅳ Video Spatio-temporal Analysis and Retrieval (VSTAR) :A New Model 4.1 VSTAR Model Components 4.2 Spatial Image Analysis 4.3 A Model for the Temporal Analysis of Image Sequences 4.4 Video Representation. Indexing. and Retrieval Usinz VSTAR 4.5 Conclusions Chapter Ⅴ Two Comparison Baseline Models for Video Retrieval 5.1 Baseline Models " 5.2 Adjeroh et al. (1999) Sequences Matching——Video Retrieval Model 5.3 Kim and Park (2002a) data set matching——Video Retrieval Model Chapter VI Spatio-temporal Video Retrieval——Experiments and Results 6.1 Purpose of Experiments 6.2 Data Description 6.3 Spatial and Temporal Feature Extraction 6.4 Video Retrieval Models: Procedure for Parameter Optimisation 6.5 Video Retrieval Models:Resuhs on Parameter Optimisation 6.6 Comparison of Four Models 6.7 Model Robustness (Noise) 6.8 Computational Complexity 6.9 Conclusions Chapter VII Conclusions 7.1 Reflections on the book as a whole 7.2 Support for book statement 7.3 Limitations of the spatio-temporal knowledge-based model 7.4 Directions for further work Appendix A Compressed vs. Uncompressed Video Appendix B Video Annotation B. 1 Semi-automatic Video Annotation System B. 2 Automatic Annotation by Object Tracking Appendix C Object-pair Correlation Matrix Appendix D Key-frames Extraction D. 1 Feature-based Representation and Similarity Measures . D. 2 Threshold Selection Appendix E Audio Features Reference