加速器物理学 第2版 英文影印版 作者: (美)S.Y.Lee著 出版时间:2006 内容简介 这本教科书是作者根据自己在印第安纳大学给研究生讲授《加速器物理学》的上课笔记和给美国粒子加速器学院讲授的两门课的相关讲稿基础上写成的。自1999年第一版问世以来,被广泛用作教材。第二版除了对原书作必要的修改之外,增补了自由电子激光器(FEL)和束线ˉ束线相互作用的第五章。加速器物理学是一门高度综合的课程,涉及荷电粒子在特殊设计的电磁场中运动并形成特殊用途束线的物理原理和技术应用的各个领域。《加速器物理学》第一章介绍各种类型加速器的基本原理和发展历史;第二章讲述回旋加速器的横向运动及其物理处理方法;第三章介绍同步辐射加速器和线型加速器的原理和设计方法;第四章讲述同步辐射现象和低辐射电子存储环的设计原理。《加速器物理学》的最后部分,提出了开发第四代光源的前景。《加速器物理学》在每节末尾都专门设计了练习题,为了使解题变得较为容易,作者有意把题目细分为很多小题。这些题目的解题思路和最终结果除了使读者深入了解基本原理之外,还可使读者直接进入相关的设计领域。 目录 Preface Preface to the first edition 1 Introduction I Historical Developments I.1 Natural Accelerators I.2 Electrostatic Accelerators I.3 Induction Accelerators I.4 Radio-Frequency (RF) Accelerators I.5 Colliders and Storage Rings I.6 Synchrotron Radiation Storage Rings II Layout and Components of Accelerators II.1 Acceleration Cavities II.2 Accelerator Magnets II.3 Other Important Components III Accelerator Applications III.1 High Energy and Nuclear Physics III.2 Solid-State and Condensed-Matter Physics III.3 Other Applications Exercise 2 Transverse Motion I Hamiltonian for Particle Motion in Accelerators I.1 Hamiltonian in Frenet-Serret Coordinate System I.2 Magnetic Field in Frenet-Serret Coordinate System I.3 Equation of Betatron Motion I.4 Particle Motion in Dipole and Quadrupole Magnets Exercise II Linear Betatron Motion II.1 Transfer Matrix and Stability of Betatron Motion II.2 Courant-Snyder Parametrization II.3 Floquet Transformation II.4 Action-Angle Variable and Floquet Transformation II.5 Courant-Snyder Invariant and Emittance II.6 Stability of Betatron Motion: A FODO Cell Example II.7 Symplectic Condition II.8 Effect of Space-Charge Force on Betatron Motion Exercise III Effect of Linear Magnet Imperfections III.1 Closed-Orbit Distortion due to Dipole Field Errors III.2 Extended Matrix Method for the Closed Orbit III.3 Application of Dipole Field Error III.4 Quadrupole Field (Gradient) Errors III.5 Basic Beam Observation of Transverse Motion III.6 Application of quadrupole field error III.7 Transverse Spectra III.8 Beam Injection and Extraction III.9 Mechanisms of emittance dilution and diffusion Exercise IV Off-Momentum Orbit IV.1 Dispersion Function IV.2 Η-Function, Action, and Integral Representation IV.3 Momentum Compaction Factor IV.4 Dispersion Suppression and Dispersion Matching IV.5 Achromat Transport Systems IV.6 Transport Notation IV.7 Experimental Measurements of Dispersion Function IV.8 Transition Energy Manipulation A. γT jump schemes B. Flexible momentum compaction (FMC) lattices C. Other similar FMC modules D. FMC in double-bend (DB) lattices IV.9 Minimum (Η) Modules Exercise V Chromatic Aberration V.1 Chromaticity Measurement and Correction V.2 Nonlinear Effects of Chromatic Sextupoles V.3 Chromatic Aberration and Correction V.4 Lattice Design Strategy Exercise VI Linear Coupling VI.1 The Linear Coupling Hamiltonian VI.2 Effects of an isolated Linear Coupling Resonance VI.3 Experimental Measurement of Linear Coupling VI.4 Linear Coupling Correction with Skew Quadrupoles VI.5 Linear Coupling Using Transfer Matrix Formalism Exercise VII Nonlinear Resonances VII.1 Nonlinear Resonances Driven by Sextupoles VII.2 Higher-Order Resonances VII.3 Nonlinear Detuning from Sextupoles VII.4 Betatron Tunes and Nonlinear Resonances Exercise VIII Collective Instabilities and Landau Damping VIII.1 Impedance VIII.2 Transverse Wave Modes VIII.3 Effect of Wakefield on Transverse Wave VIII.4 Frequency Spread and Landau Damping Exercise IX Synchro-Betatron Hamiltonian Exercise 3 Synchrotron Motion I Longitudinal Equation of Motion I .1 The Synchrotron Hamiltonian I .2 The Synchrotron Mapping Equation I .3 Evolution of Synchrotron Phase-Space Ellipse I .4 Some Practical Examples I .5 Summary of Synchrotron Equations of Motion Exercise II Adiabatic Synchrotron Motion II.1 Fixed Points II.2 Bucket Area II.3 Small-Amplitude Oscillations and Bunch Area II.4 Small-Amplitude Synchrotron Motion at the UFP II.5 Synchrotron Motion for Large-Amplitude Particles II.6 Experimental Tracking of Synchrotron Motion Exercise III RF Phase and Voltage Modulations III.1 Normalized Phase-Space Coordinates III.2 RF Phase Modulation and Parametric Resonances III.3 Measurements of Synchrotron Phase Modulation III.4 Effects of Dipole Field Modulation III.5 RF Voltage Modulation III.6 Measurement of RF Voltage Modulation Exercise IV Nonadiabatic and Nonlinear Synchrotron Motion IV.1 Linear Synchrotron Motion Near Transition Energy IV.2 Nonlinear Synchrotron Motion at γ≈γT IV.3 Beam Manipulation Near Transition Energy IV.4 Synchrotron Motion with Nonlinear Phase Slip Factor IV.5 The QI Dynamical Systems Exercise V Beam Manipulation in Synchrotron Phase Space V.1 RF Frequency Requirements V.2 Capture and Acceleration of Proton and Ion Beams V.3 Bunch Compression and Rotation V.4 Debunching V.5 Beam Stacking and Phase Displacement Acceleration V.6 Double rf Systems V.7 The Barrier RF Bucket Exercise VI Fundamentals of RF Systems VI.1 Pillbox Cavity VI.2 Low Frequency Coaxial Cavities VI.3 Beam Loading VI.4 Beam Loading Compensation and Robinson Instability Exercise VII Longitudinal Collective Instabilities VII.1 Longitudinal Spectra VII.2 Collective Microwave Instability in Coasting Beams VII.3 Longitudinal Impedance VII.4 Microwave Single Bunch Instability Exercise VIII Introduction to Linear Accelerators VIII.1 Historical Milestones VIII.2 Fundamental Properties of Accelerating Structures A. Transit time factor B. Shunt impedance C. The quality factor Q VIII.3 Particle Acceleration by EM Waves A. EM waves in a cylindrical wave guide B. Phase velocity and group velocity C. TM modes in a cylindrical pillbox cavity D. A1varez structure E. Loaded wave guide chain and the space harmonics F. Standing wave, traveling wave, and coupled cavity linacs G. HOMs VIII.4 Longitudinal Particle Dynamics in a Linac VIII.5 Transverse Beam Dynamics in a Linac Exercise 4 Physics of Electron Storage Rings I Fields of a Moving Charged Particle I.1 Non-relativistic Reduction I.2 Radiation Field for Particles at Relativistic Velocities I.3 Frequency and Angular Distribution I.4 Quantum Fluctuation Exercise II Radiation Damping and Excitation II.1 Damping of Synchrotron Motion II.2 Damping of Betatron Motion II.3 Damping Rate Adjustment II.4 Radiation Excitation and Equilibrium Energy Spread II.5 Radial Bunch Width and Distribution Function II.6 Vertical Beam Width II.7 Radiation Integrals II.8 Beam Lifetime Exercise III Emittance in Electron Storage Rings III.1 Emittance of Synchrotron Radiation Lattices A. FODO cell lattice B. Double-bend achromat (Chasman-Green lattice) C. Minimum (Η)-function lattice D. Minimizing emittance in a combined function DBA E. Three-bend achromat III.2 Insertion Devices III.3 Beam Physics of High Brightness Storage Rings Exercise 5 Special Topics in Beam Physics I Free Electron Laser (FEL) I.1 Small Signal Regime I.2 Interaction of the Radiation Field with the Beam I.3 Experiments on High Gain FEL Generation Exercise II Beam-Beam Interaction II. 1 The beam-beam force II.2 The Coherent Beam-Beam Effects II.3 Nonlinear Beam-Beam Effects II.4 Experimental Observations and Numerical Simulations II.5 Beam-Beam Interaction in Linear Colliders Exercise A Basics of Classical Mechanics I Hamiltonian Dynamics I.1 Canonical Transformations I.2 Fixed Points I.3 Poisson Bracket I.4 Liouville Theorem I.5 Floquet Theorem II Stochastic Beam Dynamics II.1 Central Limit Theorem II.2 Langevin Equation of Motion II.3 Stochastic Integration Methods II.4 Fokker-Planck Equation B Numerical Methods and Physical Constants I Fourier Transform 1.1 Nyquist Sampling Theorem 1.2 Discrete Fourier Transform 1.3 Digital Filtering 1.4 Some Simple Fourier Transforms II Model Independent Analysis II.1 Model Independent Analysis II.2 Independent Component Analysis II.3 Accelerator Modeling III Cauchy Theorem and the Dispersion Relation III.1 Cauchy Integral Formula III.2 Dispersion Relation IV Useful Handy Formulas IV.1 Generating functions for the Bessel functions IV.2 The Hankel transform IV.3 The complex error function IV.4 A multipole expansion formula IV.5 Cylindrical Coordinates IV.6 Gauss' and Stokes' theorems IV.7 Vector Operation V Maxwell's equations V.1 Lorentz Transformation of EM fields V.2 Cylindrical waveguides V.3 Voltage Standing Wave Ratio VI Physical Properties and Constants Bibliography Index Symbols and Notations
上一篇: 同步三练 初中物理 九年级 沪科版 同步三练编写组 2018年版
下一篇: 加拿大物理奥林匹克 黄晶,矫健,孙佳琪编著 2017年版
|