360book 首页 > 行业图书 > 材料书籍 > 正文 打印 下载 

先进碳材料科学与工程(英文版)  下载

360book.com  2017-12-25 00:00:00  下载

先进碳材料科学与工程(英文版)

作者:(日)稻垣道夫 着

出版时间:2013年

内容简介

《先进碳材料科学与工程》由稻垣道夫着。由于富勒烯和石墨烯分别获得了1996年诺贝尔化学奖和2010年诺贝尔物理奖,加上1991年发现的纳米炭管,引发了世界范围内的纳米科技革命。碳材料无论在科技界还是工业界都是热点,各国投入了大量的财力物力进行研究开发。《先进碳材料科学与工程》结合作者(稻垣道夫)们在碳材料科学与工程的最新研究成果,重点介绍了碳材料的合成、表征和应用方面的新近进展,深入浅出、图文并茂,适合于广大读者自学或者用作教材。

目录

Preface

Acknowledgment

CHAPTER 1 Introduction

1.1 Classification of carbon materials

1.2 Nanotexture of carbon materials

1.3 Microtexture of carbon materials

1.4 Specification of carbon materials

1.5 Construction of the present book

References

CHAPTER 2 Carbon Nanotubes: Synthesis and Formation

2.1 Synthesis of carbon nanotubes

2.2 Formation of carbon nanotubes

2.2.1 Formation into yarns

2.2.2 Formation into sheets

2.2.3 Formation into sponges

2.3 Applications of carbon nanotubes

2.4 Concluding remarks

References

CHAPTER 3 Graphene: Synthesis and Preparation

3.1 Preparation through the cleavage of graphite

3.2 Preparation through the exfoliation of graphite

3.2.1 Preparation using graphite oxides

3.2.2 Preparation using graphite intercalation compounds

3.3 Synthesis through chemical vapor deposition

3.4 Synthesis through the organic route

3.5 Preparation through other processes

3.6 Concluding remarks

References

CHAPTER4 Carbonization Under Pressure

4.1 Carbonization under built—up pressure

4.1.1 Setup for carbonization under pressure

4.1.2 Optical texture and carbonization yield

4.1.3 Particle morphology

4.2 Carbonization under hydrothermal conditions

4.3 Carbonization under supercritical conditions

4.4 Concluding remarks

4.4.1 Temperature and pressure conditions for carbonization

4.4.2 Composition of precursors for the formation of carbon spheres

References

CHAPTER 5 Stress Graphitization

5.1 Graphitization under pressure

5.1.1 Structural change in carbons

5.1.2 Mechanism

5.2 Graphitization in coexistence with minerals under pressure

5.2.1 Coexistence with calcium compounds

5.2.2 Coexistence with other minerals

5.2.3 Mechanism for acceleration of graphitization

5.3 Stress graphitization in carbon/carbon composites

5.3.1 Acceleration of graphitization

5.3.2 Mechanism

5.4 Concluding remarks

5.4.1 Graphitization under pressure

5.4.2 Occurrence of graphite in nature

5.4.3 Stress graphitization in carbon/carbon composites

References

CHAPTER 6 Glass—like Carbon: Its Activation and Graphitization

6.1 Activation of glass—like carbon

6.1.1 Glass—like carbon spheres

6.1.2 Activation in a flow of dry air

6.1.3 Activation in a flow of wet air

6.1.4 Activation process

6.1.5 Direct observation of micropores

6.1.6 Two—step activation

6.2 Graphitization of glass—like carbons

6.2.1 Graphitization through melting

6.2.2 Graphitization under high pressure

6.2.3 Graphitization in C/C composites

6.3 Concluding remarks

References

CHAPTER 7 Template Carbonization: Morphology and Pore Control

7.1 Template carbonization for morphological control

7.1.1 Inorganic layered compounds

7.1.2 Anodic aluminum oxide films

7.1.3 Organic foams

7.2 Template carbonization for pore—structure control

7.2.1 Zeolites

7.2.2 Mesoporous silicas

7.2.3 MgO

7.2.4 Block copolymer surfactants (soft templates)

7.2.5 Metal—organic frameworks

7.2.6 Other templates

7.3 Concluding remarks

References

CHAPTER 8 Carbon Nanofibers Via Electrospinning

8.1 Carbon nanofibers synthesized via electrospinning

8.1.1 Polyacrylonitrile

8.1.2 Pitch

8.1.3 Polyimides

8.1.4 Poly(vinylidene fluoride)

8.1.5 Phenolic resins

8.2 Applications

8.2.1 Electrode materials for electrochemical capacitors

8.2.2 Anode materials for lithium—ion rechargeable batteries

8.2.3 Catalyst support

8.2.4 Composite with carbon nanotubes

8.3 Concluding remarks

8.3.1 Carbon precursors

8.3.2 Pore—structure control

8.3.3 Improvement of electrical conductivity

8.3.4 Loading of metallic species

References

CHAPTER 9 Carbon Foams

9.1 Preparation of carbon foams

9.1.1 Exfoliation and compaction of graphite

9.1.2 Blowing of carbon precursors

9.1.3 Template carbonization

9.2 Applications of carbon foams

9.2.1 Thermal energy storage

9.2.2 Electrodes

9.2.3 Adsorption

9.2.4 Other applications

9.3 Concluding remarks

References

CHAPTER 10 Nanoporous Carbon Membranes and Webs

10.1 Synthesis

10.1.1 Pyrolysis and carbonization of organic precursors

10.1.2 Templating

i0.1.3 Chemical and physical vapor deposition

10.1.4 Formation of carbon nanotubes and nanofibers

10.2 Applications

10.2.1 Adsorbents

10.2.2 Separation membranes

10.2.3 Chemical sensors and biosensors

10.2.4 Electrodes i

10.2.5 Other applications

10.3 Concluding remarks

References

CHAPTER 11 Carbon Materials for Electrochemical Capacitors

11.1 Symmetrical supercapacitors

11.1.1 Activated carbons

11.1.2 Templated carbons

11.1.3 Other carbons

11.1.4 Carbons containing foreign atoms

11.1.5 Carbon nanotubes and nanofibers

11.2 Asymmetrical supercapacitors

11.3 Asymmetrical capacitors

11.4 Carbon—coating of electrode materials

11.5 Concluding remarks

References

CHAPTER 12 Carbon Materials in Lithium—ion Rechargeable Batteries

12.1 Anode materials

12.1.1 Materials

12.1.2 Carbon coating of graphite

12.1.3 Carbon coating of Li4T15O12

12.2 Cathode materials

12.2.1 Materials

12.2.2 Carbon coating of LiFePO4

12.3 Concluding remarks

References

CHAPTER 13 Carbon Materials in Photocatalysis

13.1 TiO2—1oaded activated carbons

13.2 Mixture of activated carbon and TiO2

13.3 Carbon—doped TiO2

13.4 Carbon—coated TiO2

13.5 Synthesis of novel photocatalysts via carbon coating

13.5.1 Carbon—coated Ti O2n—1

13.5.2 Carbon—coated W18049

13.5.3 TiO2 co—modified by carbon and iron

13.6 Concluding remarks

References

CHAPTER 14 Carbon Materials for Spilled—oil Recovery

14.1 Sorption capacity for heavy oils

14.1.1 Exfoliated graphite

14.1.2 Carbonized fir fibers

14.1.3 Carbon fibers

14.1.4 Carbon nanotube sponge

14.1.5 Other carbon materials

14.2 Selectivity of sorption

14.3 Sorption kinetics

14.4 Cycle performance of carbon sorbents and heavy oils

14.5 Preliminary experiments for practical recovery of spilled heavy oils

14.5.1 Exfoliated graphite packed into a plastic bag

14.5.2 Formed exfoliated graphite

14.5.3 Heavy oil sorption from contaminated sand

14.5.4 Sorption of heavy—oil mousse

14.5.5 TiO2—1oaded exfoliated graphite

14.6 Concluding remarks

14.6.1 Comparison among carbon materials

14.6.2 Mechanism of heavy oil sorption

14.6.3 Comparison with other materials

References

CHAPTER 15 Carbon Materials for Adsorption of Molecules and Ions

15.1 Adsorption and storage of hydrogen

15.2 Adsorption and storage of methane and methane hydrate

15.3 Adsorption and storage of CO2

15.4 Adsorption of organic molecules

15.4.1 Organic gases (including VOCs)

15.4.2 Organic molecules in water

15.5 Adsorption and removal of heavy—metal ions in water

15.6 Capacitive deionization

15.7 Concluding remarks

References

CHAPTER 16 Highly Oriented Graphite with High Thermal Conductivity

16.1 Preparation

16.2 Characterization

16.3 Carbon materials with high thermal conductivity

16.3.1 Pyrolytic graphite

16.3.2 Polyimide—derived graphite

16.3.3 Natural graphite and its composites

16.3.4 Carbon fibers

16.3.5 Carbon nanotubes and graphene

16.3.6 Diamond and diarnond—like carbons

16.4 Concluding remarks

References

CHAPTER 17 Isotropic High—density Graphite and Nuclear Applications

17.1 Production

17.2 Properties

17.3 Nuclear applications

17.3.1 Fission reactors

17.3.2 Fusion reactors

17.4 Concluding remarks

References

INDEX




上一篇: 现代材料测试技术
下一篇: 小冲孔微试样材料性能测试技术及应用

地址:http://www.360book.com/books/227/357969.html