Python智能优化算法:从原理到代码实现与应用 作者 范旭 出版时间 2022年版内容简介本书以理论结合应用为指导思想,以智能优化算法为对象,以Python为开发语言,主要讲解智能优化算法的基本原理、代码实现、应用案例和性能测试。本书轻理论,重实践,目的是使读者能够迅速地入门并掌握智能优化算法及其Python代码实现的相关技巧,并在后续的学术研究和工程实践中加以应用。本书分为12章,第1章~第10章分别介绍10种智能优化算法(黏菌算法、人工蜂群算法、蝗虫优化算法、蝴蝶优化算法、飞蛾扑火优化算法、海鸥优化算法、麻雀搜索算法、鲸鱼优化算法、黄金正弦算法、教与学优化算法)的基本原理、Python代码实现、应用案例;第11章、第12章介绍智能优化算法的基准测试集和性能测试。本书取材新颖、案例丰富、通俗易懂,可作为广大高校本科生、研究生的学习用书,也可作为广大科研人员、学者、工程技术人员的参考用书。目 录第1章 黏菌算法及其Python实现 11.1 黏菌算法的基本原理 11.1.1 接近食物阶段 11.1.2 包围食物阶段 21.1.3 抓取食物阶段 21.1.4 黏菌算法流程 31.2 黏菌算法的Python实现 41.2.1 种群初始化 41.2.2 适应度函数 51.2.3 边界检查和约束函数 61.2.4 黏菌算法代码 71.3 黏菌算法的应用案例 101.3.1 求解函数极值 101.3.2 基于黏菌算法的压力容器设计 121.3.3 基于黏菌算法的三杆桁架设计 151.3.4 基于黏菌算法的拉压弹簧设计 18参考文献 21第2章 人工蜂群算法及其Python实现 222.1 人工蜂群算法的基本原理 222.1.1 种群初始化 232.1.2 引领蜂搜索 242.1.3 跟随蜂搜索 242.1.4 侦察蜂搜索 252.1.5 人工蜂群算法流程 252.2 人工蜂群算法的Python实现 262.2.1 种群初始化 262.2.2 适应度函数 282.2.3 边界检查和约束函数 282.2.4 轮盘赌策略 292.2.5 人工蜂群算法代码 302.3 人工蜂群算法的应用案例 342.3.1 求解函数极值 342.3.2 基于人工蜂群算法的压力容器设计 362.3.3 基于人工蜂群算法的三杆桁架设计 392.3.4 基于人工蜂群算法的拉压弹簧设计 42参考文献 45第3章 蝗虫优化算法及其Python实现 463.1 蝗虫优化算法的基本原理 463.1.1 蝗虫优化算法数学模型 463.1.2 社会相互作用力 473.1.3 蝗虫优化算法流程 503.2 蝗虫优化算法的Python实现 503.2.1 种群初始化 503.2.2 适应度函数 523.2.3 边界检查和约束函数 523.2.4 社会相互作用力函数 533.2.5 蝗虫优化算法代码 543.3 蝗虫优化算法的应用案例 573.3.1 求解函数极值 573.3.2 基于蝗虫优化算法的压力容器设计 593.3.3 基于蝗虫优化算法的三杆桁架设计 623.3.4 基于蝗虫优化算法的拉压弹簧设计 65参考文献 68第4章 蝴蝶优化算法及其Python实现 694.1 蝴蝶优化算法的基本原理 694.1.1 蝴蝶的香味 694.1.2 蝴蝶的移动与迭代 704.1.3 蝴蝶优化算法流程 714.2 蝴蝶优化算法的Python实现 724.2.1 种群初始化 724.2.2 适应度函数 734.2.3 边界检查和约束函数 744.2.4 蝴蝶优化算法代码 754.3 蝴蝶优化算法的应用案例 774.3.1 求解函数极值 774.3.2 基于蝴蝶优化算法的压力容器设计 804.3.3 基于蝴蝶优化算法的三杆桁架设计 834.3.4 基于蝴蝶优化算法的拉压弹簧设计 86参考文献 89第5章 飞蛾扑火优化算法及其Python实现 905.1 飞蛾扑火优化算法的基本原理 905.1.1 飞蛾与火焰 905.1.2 飞蛾扑火行为 915.1.3 飞蛾扑火优化算法流程 935.2 飞蛾扑火优化算法的Python实现 955.2.1 种群初始化 955.2.2 适应度函数 965.2.3 边界检查和约束函数 975.2.4 飞蛾扑火优化算法代码 985.3 飞蛾扑火优化算法的应用案例 1005.3.1 求解函数极值 1005.3.2 基于飞蛾扑火优化算法的压力容器设计 1035.3.3 基于飞蛾扑火优化算法的三杆桁架设计 1065.3.4 基于飞蛾扑火优化算法的拉压弹簧设计 109参考文献 112第6章 海鸥优化算法及其Python实现 1136.1 海鸥优化算法的基础原理 1136.1.1 海鸥迁徙 1136.1.2 海鸥攻击猎物 1146.1.3 海鸥优化算法流程 1146.2 海鸥优化算法的Python实现 1156.2.1 种群初始化 1156.2.2 适应度函数 1176.2.3 边界检查和约束函数 1176.2.4 海鸥优化算法代码 1186.3 海鸥优化算法的应用案例 1216.3.1 求解函数极值 1216.3.2 基于海鸥优化算法的压力容器设计 1236.3.3 基于海鸥优化算法的三杆桁架设计 1266.3.4 基于海鸥优化算法的拉压弹簧设计 129参考文献 132第7章 麻雀搜索算法及其Python实现 1337.1 麻雀搜索算法的基本原理 1337.1.1 麻雀种群 1337.1.2 发现者位置更新 1347.1.3 加入者位置更新 1347.1.4 遇险应急的麻雀位置更新 1347.1.5 麻雀搜索算法流程 1357.2 麻雀搜索算法的Python实现 1367.2.1 种群初始化 1367.2.2 适应度函数 1377.2.3 边界检查和约束函数 1387.2.4 麻雀搜索算法代码 1397.3 麻雀搜索算法的应用案例 1427.3.1 求解函数极值 1427.3.2 基于麻雀搜索算法的压力容器设计 1447.3.3 基于麻雀搜索算法的三杆桁架设计 1477.3.4 基于麻雀搜索算法的拉压弹簧设计 150参考文献 153第8章 鲸鱼优化算法及其Python实现 1548.1 鲸鱼优化算法的基本原理 1548.1.1 包围猎物 1548.1.2 气泡网攻击方式 1558.1.3 寻找猎物 1578.1.4 鲸鱼优化算法流程 1588.2 鲸鱼优化算法的Python实现 1598.2.1 种群初始化 1598.2.2 适应度函数 1618.2.3 边界检查和约束函数 1618.2.4 鲸鱼优化算法代码 1628.3 鲸鱼优化算法的应用案例 1658.3.1 求解函数极值 1658.3.2 基于鲸鱼优化算法的压力容器设计 1678.3.3 基于鲸鱼优化算法的三杆桁架设计 1708.3.4 基于鲸鱼优化算法的拉压弹簧设计 173参考文献 176第9章 黄金正弦算法及其Python实现 1779.1 黄金正弦算法的基本原理 1779.1.1 正弦函数 1779.1.2 黄金分割 1779.1.3 初始化 1789.1.4 黄金分割系数计算 1789.1.5 位置更新 1799.1.6 黄金分割系数更新 1799.1.7 黄金正弦算法流程 1799.2 黄金正弦算法的Python实现 1809.2.1 种群初始化 1809.2.2 适应度函数 1829.2.3 边界检查和约束函数 1829.2.4 黄金正弦算法代码 1839.3 黄金正弦算法的应用案例 1869.3.1 求解函数极值 1869.3.2 基于黄金正弦算法的压力容器设计 1899.3.3 基于黄金正弦算法的三杆桁架设计 1929.3.4 基于黄金正弦算法的拉压弹簧设计 195参考文献 198第10章 教与学优化算法及其Python实现 19910.1 教与学优化算法的基本原理 19910.1.1 教学阶段 20010.1.2 学习阶段 20010.1.3 教与学优化算法流程 20010.2 教与学优化算法的Python实现 20210.2.1 种群初始化 20210.2.2 适应度函数 20310.2.3 边界检查和约束函数 20410.2.4 教与学优化算法代码 20510.3 教与学优化算法的应用案例 20810.3.1 求解函数极值 20810.3.2 基于教与学优化算法的压力容器设计 21010.3.3 基于教与学优化算法的三杆桁架设计 21310.3.4 基于教与学优化算法的拉压弹簧设计 216参考文献 219第11章 智能优化算法基准测试集 22011.1 基准测试集简介 22011.2 基准测试函数绘图与测试函数代码编写 22211.2.1 函数F1 22211.2.2 函数F2 22311.2.3 函数F3 22411.2.4 函数F4 22611.2.5 函数F5 22711.2.6 函数F6 22911.2.7 函数F7 23011.2.8 函数F8 23211.2.9 函数F9 23411.2.10 函数F10 23511.2.11 函数F11 23711.2.12 函数F12 23811.2.13 函数F13 24011.2.14 函数F14 24211.2.15 函数F15 24411.2.16 函数F16 24611.2.17 函数F17 24811.2.18 函数F18 24911.2.19 函数F19 25111.2.20 函数F20 25211.2.21 函数F21 25411.2.22 函数F22 25611.2.23 函数F23 258第12章 智能优化算法性能测试 26012.1 智能优化算法性能测试方法 26012.1.1 平均值 26012.1.2 标准差 26012.1.3 最优值和最差值 26112.1.4 收敛曲线 26212.2 测试案例 26212.2.1 测试函数信息 26212.2.2 测试方法及参数设置 26312.2.3 测试结果 263 上一篇: GDAL源码剖析与开发指南 李民录 著 2014年版 下一篇: ROS机器人编程实战 2020年版 [印度] 库马尔·比平(Kumar Bipin) 著