基于广义线性模型的多元统计建模 影印版 作者: L.Fahrmeir,G.Tutz 著 出版时间:1998年版 丛编项: Springer Texts in Statistics 内容简介 本书主要讨论广义线性模型在单变量及多变量回归分析中的应用。书中通过生物学、经济学和社会学等方面多达60余个应用实例,对近年来广义线性模型新的科研成果作了系统介绍,内容新颖,实用性强。 目录 Preface ListofExamples ListofFigures ListofTables 1Introduction 1.1Outlineandexamples 1.2Remarksonnotation 1.3Furtherreading 2Modellingandanalysisofcross-sectionaldata:areviewof univariategeneralizedlinearmodels 2.1Univariategeneralizedlinearmodels 2.1.1Data Codingofcovariates Groupedandungroupeddata 2.1.2Definitionofunivariategeneralizedlinearmodels 2.1.3Modelsforcontinuousresponses Normaldistribution Gammadistribution InverseGanssiandistribution 2.1.4Modelsforbinaryandbinomialresponses Linearprobabilitymodel Probitmodel Logitmodel Complementarylog-logmodel Binarymodelsasthresholdmodelsoflatentlinear models Parameterinterpretation Overdispersion 2.1.5Modelsforcounteddata Log-linearPoissonmodel LinearPoissonmodel 2.2Likelihoodinference 2.2.1Maximumlikelihoodestimation Log-likelihood,scorefunctionandinformationmatrix ComputationoftheMLEbyiterativemethods UniquenessandexistenceofMLE's* Asymptoticproperties Discussionofregularityassumptions* Additionalscaleoroverdispersionparameter 2.2.2Hypothesistestingandgoodness-of-fitstatistics Goodness-of-fitstatistics 2.3Someextensions 2.3.1Quasi-likelihoodmodels Basicmodels Variancefunctionswithunknownparameters Nonconstantdispersionparameter 2.3.2Bayesmodels 2.3.3Nonlinearandnonexponentialfamilyregression models* 2.4Furtherdevelopments Modelsformulticategoricalresponses: multivariateextensionsofgeneralizedlinearmodels 3.1Multicategoricalresponsemodels 3.1.1Multinomialdistribution 3.1.2Data 3.1.3Themultivariatemodel 3.1.4Multivariategeneralizedlinearmodels 3.2Modelsfornominalresponses 3.2.1Theprincipleofmaximumrandomutility 3.2.2Modellingofexplanatoryvariables:choiceofdesign matrix 3.3Modelsforordinalresponses 3.3.1Cumulativemodels:thethresholdapproach Cumulativelogisticmodelorproportionaloddsmodel GroupedCoxmodelorproportionalhazardsmodel Extreme-maximal-valuedistributionmodel 3.3.2Extendedversionsofcumulativemodels 3.3.3Linkfunctionsanddesignmatricesforcumulative models 3.3.4Sequentialmodels Generalizedsequentialmodels Linkfunctionsofsequentialmodels 3.3.5Strictstochasticordering* 3.3.6Two-stepmodels Linkfunctionanddesignmatrixfortwo-stepmodels 3.3.7Alternativeapproaches* 3.4Statisticalinference 3.4.1Maximumlikelihoodestimation Numericalcomputation 3.4.2Testingandgoodness-of-fit Testingoflinearhypotheses Goodness-of-fitstatistics 3.4.3Power-divergencefamily* Asymptoticpropertiesunderclassical"fixedcells" assumptions Sparsenessand"increasing-cells"asymptotics 3.5Multivariatemodelsforcorrelatedresponses 3.5.1Conditionalmodels Asymmetricmodels Symmetricmodels 3.5.2Marginalmodels Statisticalinference Selectingandcheckingmodels 4.1Variableselection 4.1.1Selectioncriteria 4.1.2Selectionprocedures All-subsetsselection Stepwisebackwardandforwardselection 4.2Diagnostics 4.2.1Diagnostictoolsfortheclassicallinearmodel 4.2.2Generalizedhatmatrix 4.2.3Residualsandgoodness-of-fitstatistics 4.2.4Casedeletion 4.3Generaltestsformisspecification* 4.3.1Estimationundermodelmisspecification 4.3.2Hausman-typetests Hansmantests Informationmatrixtest 4.3.3Testsfornon-nestedhypotheses Testsbasedonartificialnesting GeneralizedWaldandscoretests 5Semi-andnonparametricapproachestoregression analysis 5.1Smoothingtechniquesforcontinuousresponses 5.1.1Simpleneighbourhoodsmoothers 5.1.2Splinesmoothing Cubicsmoothingsplines Regressionsplines 5.1.3Kernelsmoothing Relationtoothersmoothers Bias-variancetrade-off 5.1.4Selectionofsmoothingparameters* 5.2Kernelsmoothingwithmulticategoricalresponse 5.2.1Kernelmethodsfortheestimationofdiscrete distributions 5.2.2Smoothedcategoricalregression 5.2.3Choiceofsmoothingparameters* 5.3Splinesmoothingingeneralizedlinearmodels 5.3.1Cubicsplinesmoothingwithasinglecovariate Fisherscoringforgeneralizedsplinesmoothing* Choiceofsmoothingparameter 5.3.2Generalizedadditivemodels Fisherscoringwithbackfitting* 6Fixedparametermodelsfortimeseriesand longitudinaldata 6.1Timeseries 6.1.1Conditionalmodels Generalizedautoregressivemodels Quasi-likelihoodmodelsandextensions 6.1.2Statisticalinferenceforconditionalmodels 6.1.3Marginalmodels Estimationofmarginalmodels 6.2Longitudinaldata 6.2.1Conditionalmodels Generalizedautoregressivemodels,quasi-likelihood models Statisticalinference Transitionmodels Subject-specificapproachesandconditional likelihood 6.2.2Marginalmodels Statisticalinference Randomeffectsmodels 7.1Linearrandomeffectsmodelsfornormaldata 7.1.1Two-stagerandomeffectsmodels Randomintercepts Randomslopes Multilevelmodels 7.1.2Statisticalinference Knownvariance-covariancecomponents Unknownvariance-covariancecomponents DerivationoftheEM-algorithm* 7.2Randomeffectsingeneralizedlinearmodels 7.3Estimationbasedonposteriormodes 7.3.1Knownvariance-covariancecomponents 7.3.2Unknownvariance-covariancecomponents 7.3.3Algorithmicdetails* Fisherscoringforgivenvariance-covariance components EM-typealgorithm 7.4Estimationbyintegrationtechniques 7.4.1Maximumlikelihoodestimationoffixedparameters 7.4.2Posteriormeanestimationofrandomeffects 7.4.3Algorithmicdetails* Directmaximization Indirectmaximization Posteriormeanestimation 7.5Examples 7.6Marginalestimationapproachtorandomeffectsmodels 7.7Furtherapproaches Statespacemodels 8.1LinearstatespacemodelsandtheKalmanfilter 8.1.1Linearstatespacemodels 8.1.2Statisticalinference LinearKalmanfilteringandsmoothing Kalmanfilteringandsmoothingasposteriormode estimation* Unknownhyperparameters EM-algorithmforestimatinghyperparameters* 8.2Non-normalandnonlinearstatespacemodels 8.2.1Dynamicgeneralizedlinearmodels Categoricaltimeseries 8.2.2Nonlinearandnonexponentialfamilymodels* 8.3Non-normalfilteringandsmoothing 8.3.1Posteriormodeestimation GeneralizedextendedKalmanfilterandsmoother* Gauss-NewtonandFisher.coringfilteringand smoothing* Estimationofhyperparameters* Someapplications 8.3.2Posteriormeanestimation AGibbssamplingapproach* Integration-basedapproaches* 8.4Longitudinaldata 8.4.1Statespacemodellingoflongitudinaldata 8.4.2Filteringandsmoothing GeneralizedKalmanfilterandsmootherfor longitudinaldata* 9Survivalmodels 9.1Modelsforcontinuoustime 9.1.1Basicmodels Exponentialdistribution Weibulldistribution 9.1.2Parametricregressionmodels Location-scalemodelsforlogT Proportionalhazardsmodels Lineartransformationmodelsandbinaryregression models 9.1.3Censoring Randomcensoring TypeIcensoring 9.1.4Estimation Exponentialmodel Weibullmodel 9.2Modelsfordiscretetime 9.2.1Lifetableestimates 9.2.2Parametricregressionmodels Thegroupedproportionalhazardsmodel Ageneralizedversion:themodelofAranda-Ordaz Thelogisticmodel Sequentialmodelandparameterizationofthe baselinehazard 9.2.3Maximumlikelihoodestimation 9.2.4Time-varyingcovariates Internalcovariates* Maximumlikelihoodestimation* 9.3Discretemodelsformultiplemodesoffailure 9.3.1Basicmodels 9.3.2Maximumlikelihoodestimation 9.4Smoothingindiscretesurvivalanalysis 9.4.1Dynamicdiscretetimesurvivalmodels Posteriormodesmoothing 9.4.2Kernelsmoothing AppendixA A.1Exponentialfamiliesandgeneralizedlinearmodels A.2Basicideasforasymptotics A.3EM-algorithm A.4Numericalintegration A.5MonteCarlomethods AppendixBSoftwareforfittinggeneralizedlinearmodels References AuthorIndex SubjectIndex
上一篇: 海伦三角形研究
下一篇: 基于不确定寿命的可靠性理论
|