普通高等教育 十三五 规划教材普通高等院校数学精品教材 线性代数 英文 作者:毛纲源,马迎秋,梁敏著 出版时间:2017年版 丛编项: 普通高等教育“十三五”规划教材、普通高等院校数学精品教材 内容简介 本书采用学生易于接受的知识结构方式和英语表述方式,科学、系统地介绍了线性代数的行列式、矩阵、高斯消元法解线性方程组、向量、方程组解的结构、特征值和特征向量、二次型等知识。强调通用性和适用性,兼顾先进性。本书起点低,难度坡度适中,语言简洁明了,不仅适用于课堂教学使用,同时也适用于自学自习。全书有关键词索引,习题按小节配置,题量适中,题型全面,书后附有答案。本书读者对象为高等院校理工、财经、医药、农林等专业大学生和教师,特别适合作为中外合作办学的国际教育班的学生以及准备出国留学深造学子的参考书。 目录 Chapter 1 Determinant(1) 1.1 Definition of Determinant(1) 1.1.1 Determinant arising from the solution of linear system(1) 1.1.2 The definition of determinant of order n(5) 1.1.3 Determine the sign of each term in a determinant (8) Exercise 1.1(10) 1.2 Basic Properties of Determinant and Its Applications(12) 1.2.1 Basic properties of determinant(12) 1.2.2 Applications of basic properties of determinant(15) Exercise 1.2(19) 1.3 Expansion of Determinant (21) 1.3.1 Expanding a determinant using one row (column)(21) 1.3.2 Expanding a determinant along k rows (columns)(27) Exercise 1.3(29) 1.4 Cramer’s Rule(30) Exercise 1.4(36)
Chapter 2 Matrix(38) 2.1 Matrix Operations(38) 2.1.1 The concept of matrices(38) 2.1.2 Matrix Operations(41) Exercise 2.1(58) 2.2 Some Special Matrices(60) Exercise 2.2(64) 2.3 Partitioned Matrices(66) Exercise 2.3(72) 2.4 The Inverse of Matrix(73) 2.4.1 Finding the inverse of an n×n matrix(73) 2.4.2 Application to economics(81) 2.4.3 Properties of inverse matrix (83) 2.4.4 The adjoint matrix A (or adjA) of A(86) 2.4.5 The inverse of block matrix(89) Exercise 2.4(91) 2.5 Elementary Operations and Elementary Matrices(94) 2.5.1 Definitions and properties (94) 2.5.2 Application of elementary operations and elementary matrices(100) Exercise2.5(102) 2.6 Rank of Matrix(103) 2.6.1 Concept of rank of a matrix(104) 2.6.2 Find the rank of matrix(107) Exercise 2.6(109)
Chapter 3 Solving Linear System by Gaussian Elimination Method(110) 3.1 Solving Nonhomogeneous Linear System by Gaussian Elimination Method(110) 3.2 Solving Homogeneous Linear Systems by Gaussian Elimination Method(128) Exercise 3(131)
Chapter 4 Vectors(134) 4.1 Vectors and its Linear Operations(134) 4.1.1 Vectors(134) 4.1.2 Linear operations of vectors(136) 4.1.3 A linear combination of vectors (137) Exercise 4.1(143) 4.2 Linear Dependence of a Set of Vectors (143) Exercise 4.2(155) 4.3 Rank of a Set of Vectors(156) 4.3.1 A maximal independent subset of a set of vectors(156) 4.3.2 Rank of a set of vectors(159) Exercise 4.3(163)
Chapter 5 Structure of Solutions of a System(165) 5.1 Structure of Solutions of a System of Homogeneous Linear Equations (165) 5.1.1 Properties of solutions of a system of homogeneous linear equations(165) 5.1.2 A system of fundamental solutions (166) 5.1.3 General solution of homogeneous system(171) 5.1.4 Solutions of system of equations with given solutions of the system(173) Exercise 5.1(176) 5.2 Structure of Solutions of a System of Nonhomogeneous Linear Equations(178) 5.2.1 Properties of solutions(178) 5.2.2 General solution of nonhomogeneous equations (179) 5.2.3 The simple and convenient method of finding the system of fundamental solutions and particular solution(183) Exercise 5.2(189)
Chapter 6 Eigenvalues and Eigenvectors of Matrices(191) 6.1 Find the Eigenvalue and Eigenvector of Matrix(191) Exercise 6.1(197) 6.2 The Proof of Problems Related with Eigenvalues and Eigenvectors(198) Exercise 6.2(199) 6.3 Diagonalization(200) 6.3.1 Criterion of diagonalization(200) 6.3.2 Application of diagonalization(209) Exercise 6.3(210) 6.4 The Properties of Similar Matrices(211) Exercise 6.4(216) 6.5 Real Symmetric Matrices(218) 6.5.1 Scalar product of two vectors and its basis properties(218) 6.5.2 Orthogonal vector set(220) 6.5.3 Orthogonal matrix and its properties(223) 6.5.4 Properties of real symmetric matrix(225) Exercise 6.5(229)
Chapter 7 Quadratic Forms (231) 7.1 Quadratic Forms and Their Standard Forms(231) Exercise 7.1(236) 7.2 Classification of Quadratic Forms and Positive Definite Quadratic(Positive Definite Matrix)(237) 7.2.1 Classification of Quadratic Form(237) 7.2.2 Criterion of a positive definite matrix(239) Exercise 7.2(241) 7.3 Criterion of Congruent Matrices(242) Exercise 7.3(245)