几何(英文 影印本) 出版时间:2011年版 内容简介 《几何》是一部本科生水平的几何教程。通过《几何》可以了解作者的思想以及作者在该领域做出的重大贡献。书中首先讲述欧几里得基础知识,然后进一步引导读者了解欧几里得几何的关键性内容、近期发展和更多的最新结果,许多证明可以加深对内容的理解。内容有坐标的引入、区域理论、几何学结构和有限场扩展、平行公设历史、多种非欧几里得几何和规则半规则多面体。《几何英文(影印版)》是数学专业中等及以上水平读者很难得的一本入门书籍。 目录 chapter 1. euclid‘s geometry 1. a first look at euclid’s elements 2. ruler and compass constructions 3. euclid‘s axiomatic method 4. construction of the regular pentagon 5. some newer results chapter 2. hilbert’s axioms 6. axioms of incidence 7. axioms of betweenness 8. axioms of congruence for line segments 9. axioms of congruence for angles 10. hilbert planes 11. intersection of lines and circles 12. euclidean planes chapter 3. geometry over fields 13. the real cartesian plane 14. abstract fields and incidence 15. ordered fields and betweenness 16. congruence of segments and angles 17. rigid motions and sas 18. non-archimedean geometry chapter 4. segment arithmetic 19. addition and multiplication of line segments 20. similar triangles 21. introduction of coordinates chapter 5. area 22. area in euclid‘s geometry 23. measure of area functions 24. dissection 25. quadrature circuli 26. euclid’s theory of volume 27. hilbert‘s third problem chapter 6. construction problems and field extensions 28. three famous problems 29. the regular 17-sided polygon 30. constructions with compass and marked ruler 31. cubic and quartic equations 32. appendix: finite field extensions chapter 7. non-euclidean geometry 33. history of the parallel postulate 34. neutral geometry 35. archimedean neutral geometry 36. non-euclidean area 37. circular inversion 38. digression: circles determined by three conditions 39. the poincare model 40. hyperbolic geometry 41. hilbert’s arithmetic of ends 42. hyperbolic trigonometry 43. characterization of hilbert planes chapter 8. polyhedra 44. the five regular solids 45. euler‘s and cauchy’s theorems 46. semiregular and face-regular polyhedra 47. symmetry groups of polyhedra appendix: brief euclid notes references list of axioms index of euclid‘s propositions index