360book 首页 > 行业图书 > 数学书籍 > 正文 打印 下载 

代数数论 [潘承洞 著] 2011年版  下载

360book.com  2018-04-28 20:55:36  下载

代数数论
出版时间:2011年版
内容简介
  潘承洞与潘承彪所著的《代数数论》在初等数论的基础与观点之上,以尽可能少的抽象代数概念与方法,来具体地介绍代数数论中最经典、最基本、因而也是最初等的内容。它取材恰当,概念的引进自然、清楚。从具体到抽象、特殊到一般的写法。以及配有适当的例题和习题,使初学者容易理解、掌握,而且所得到的实质性结论并不比通常的代数数论教材要少。《代数数论》适用于大中师生和数学爱好者。
目录
第1章 群、环、域
§1.1 自然数、有理整数、有理数
§1.2 集合的二元运算、半群
§1.3 群
§1.4 环、整环、域
§1.5 由子集生成的子环、子域
§1.6 环的理想、商环
§1.7 整环的分式域、环和域的扩张
习题
第2章 初等数论的基础知识
§2.1 Z中的整除
§2.2 Z中的同余
§2.3 Z中的n次剩余、剩余特征、积性特征
习题
第3章 整环中算术的基本知识
§3.1 整环中的整除概念
§3.2 整环中的同余概念
§3.3 Z[i]中的算术
§3.3A Z[i]中的整除
§3.3B Z[i]中的剩余系
§3.3C Z[i]中的整除理论的应用
§3.4 Z[□]中的算术
§3.5 Z[x]中的算术
§3.6 Euclid整环
习题
第4章 代数数
§4.1 代数数与代数整数
§4.2 代数数的不可约多项式与次数
§4.3 代数数域与代数整数环
习题
第5章 二次域的算术
§5.1 基本性质
§5.2 倍数集合及完全剩余系
§5.3 二次:Euclid域
§5.4 几个不定方程
§5.5 特征和
§5.6 四次互反律
§5.7 三次互反律
习题
第6章 代数数域的整基
§6.1 模
§6.2 模的维数和基
§6.3 纯三次域
§6.4 分圆域
§6.5 Fermat大定理(一)
习题
第7章 代数数域的单位
§7.1 单位定理(一)
§7.2 Minkowski线性型定理
§7.3 单位定理(二)
习题




上一篇: 多项式代数 [王东明 等编著] 2011年版
下一篇: 复变函数与积分变换 第三版 [郝铁钢 主编] 2014年版

地址:http://www.360book.com/books/217/433681.html