概率论教程 作者:(德)凯兰克 著 出版时间:2012年版 内容简介 《概率论教程》是一部讲述现代概率论及其测度论应用基础的教程,其目标读者是该领域的研究生和相关的科研人员。内容广泛,有许多初级教程不能涉及到得的。理论叙述严谨,独立性强。有关测度的部分和概率的章节相互交织,将概率的抽象性完全呈现出来。此外,还有大量的图片、计算模拟、重要数学家的个人传记和大量的例子。这使得表现形式更加活跃。 目录 preface 1 basic measure theory 1.1 classes of sets 1.2 set functior 1.3 the measure exterion theorem 1.4 measurable maps 1.5 random variables 2 independence 2.1 independence of events 2.2 independent random variables 2.3 kolmogorov's 0-1 law 2.4 example:percolation 3 generating functior 3.1 definition and examples 3.2 poisson approximation 3.3 branching processes 4 the integral 4.1 cortruction and simple properties 4.2 monotone convergence and fatou's lemma .4.3 lebesgue integral verus riemann integral 5 moments and laws of large number 5.1 moments 5.2 weak law of large number 5.3 strong law of large number 5.4 speed of convergence in the strong lln 5.5 the poisson process 6 convergence theorems 6.1 almost sure and measure convergence 6.2 uniform integrability 6.3 exchanging integral and differentiation 7 lp-spaces and the radon-nikodym theorem 7.1 definitior 7.2 inequalities and the fischer-riesz theorem 7.3 hilbert spaces 7.4 lebesgue's decomposition theorem 7.5 supplement:signed measures 7.6 supplement:dual spaces 8 conditional expectatior 8.1 elementary conditional probabilities 8.2 conditional expectatior 8.3 regular conditional distribution 9 martingales 9.1 processes, filtratior, stopping times 9.2 martingales 9.3 discrete stochastic integral 9.4 discrete martingale representation theorem and the crr model 10 optional sampling theorems 10.1 doob decomposition and square variation 10.2 optional sampling and optional stopping 10.3 uniform integrability and optional sampling 11 martingale convergence theorems and their applicatior 11.1 doob's inequality 11.2 martingale convergence theorems 11.3 example:branching process 12 backwards martingales and exchangeability 12.1 exchangeable families of random variables 12.2 backwards martingales 12.3 de finetti's theorem 13 convergence of measures 13.1 a topology primer 13.2 weak and vague convergence 13.3 prohorov's theorem 13.4 application:a fresh look at de finetti's theorem 14 probability measures on product spaces 14.1 product spaces 14.2 finite products and trarition kernels 14.3 kolmogorov's exterion theorem 14.4 markov semigroups 15 characteristic functior and the central limit theorem 15.1 separating classes of functior 15.2 characteristic functior:examples 15.3 l6vy's continuity theorem 15.4 characteristic functior and moments 15.5 the central limit theorem 15.6 multidimerional central limit theorem 16 infinitely divisible distributior 16.1 l6vy-khinchin formula 16.2 stable distributior 17 markov chair 17.1 definitior and cortruction 17.2 discrete markov chair:examples 17.3 discrete markov processes in continuous time 17.4 discrete markov chair:recurrence and trarience 17.5 application:recurrence and trarience of random walks 17.6 invariant distributior 18 convergence of markov chair 18.1 periodicity of markov chair 18.2 coupling and convergence theorem 18.3 markov chain monte carlo method 18.4 speed of convergence 19 markov chair and electrical networks 19.1 harmonic functior 19.2 reverible markov chair 19.3 finite electrical networks 19.4 recurrence and trarience 19.5 network reduction 19.6 random walk in a random environment 20 ergodic theory 20.1 definitior 20.2 ergodic theorems 20.3 examples 20.4 application:recurrence of random walks 20.5 mixing 21 brownian motion 21.1 continuous verior 21.2 cortruction and path properties 21.3 strong markov property 21.4 supplement:feller processes 21.5 cortruction via l2-approximation 21.6 the space c([0, ∞)) 21.7 convergence of probability measures on c([0, ∞)) 21.8 dorker's theorem 21.9 pathwise convergence of branching processes 21.10 square variation and local martingales 22 law of the iterated logarithm 22.l iterated logarithm for the brownian motion 22.2 skorohod's embedding theorem 22.3 hartman-wintner theorem 23 large deviatior 23.1 cramer's theorem 23.2 large deviatior principle 23.3 sanov's theorem 23.4 varadhan's lemma and free energy 24 the poisson point process 24.1 random measures 24.2 properties of the poisson point process 24.3 the poisson-dirichlet distribution 25 the it6 integral 25.1 it6 integral with respect to brownian motion 25.2 it6 integral with respect to diffusior 25.3 the it6 formula 25.4 dirichlet problem and brownian motion 25.5 recurrence and trarience of brownian motion 26 stochastic differential equatior 26.1 strong solutior 26.2 weak solutior and the martingale problem 26.3 weak uniqueness via duality references notation index name index subject index
上一篇: 概率论与数理统计 [胡月,许梅生 主编] 2012年版
下一篇: 费马大定理:解开一个古代数学难题的秘密 2011年版
|