高等数学(英文版 下册) 作者:北京邮电大学高等数学双语教学组 编出版时间:2012年版内容简介《高等数学.下(英文版)》为《高等数学》双语教材的第二部分,主要内容包括微分方程及其简单应用、解析几何、多元函数的微分及其应用、多元函数的积分及其应用,以及曲线、曲面积分。 《高等数学.下(英文版)》的每一个部分都经过了精细的筛选,力求做到重点突出、层次分明、叙述清楚、深入浅出、简明易懂。全书例题较为丰富,并且每一节之后均配有一定数量的习题。习题分为两个部分,第一部分主要是对基本知识和基本方法的训练,第二部分则主要强调对基本知识和方法的灵活运用能力。本书适用于高等学校理工科各专业学生的双语教学,同时也可作为其他专业的教材和参考教材。目录《高等数学.下(英文版)》chapter7differentialequations7.1basicconceptsofdifferentialequations7.1.1examplesofdifferentialequations7.1.2basicconcepts7.1.3geometricinterpretationofthefirst-orderdifferentialequationexercises7.17.2first-orderdifferentialequations7.e.1first-orderseparabledifferentialequation7.2.2homogeneousfirst-orderequations7.2.3linearfirst-orderequations7.2.4bernoulli"sequation7.2.5someotherexamplesthatcanbereducedtolinearfirst-orderequationsexercises7.27.3reduciblesecond-orderdifferentialequationsexercises7.37.4higher-orderlineardifferentialequations7.4.1someexamplesoflineardifferentialequationofhigher-order7.4.2structureofsolutionsoflineardifferentialequationsexercises7.4.7.5higher-orderlinearequationswithconstantcoefficients7.5.1higher-orderhomogeneouslinearequationswithconstantcoefficients7.5.2higher-ordernonhomogeneouslinearequationswithconstantcoefficientsexercises7.57.6"euler"sdifferentialequationexercises7.67.7applicationsofdifferentialequationsexercises7.7chapter8vectorsandsolidanalyticgeometry8.1vectorsinplaneandinspace8.1.1vectors8.1.2operationsonvectors8.1.3vectorsinplane8.1.4rectangularcoordinatesystem8.1.5vectorsinspaceexercises8.1partapartb8.2productsofvectors8.2.1scalarproductoftwovectors8.2.2vectorproductoftwovectors8.2.3triplescalarproductofthreevectors8.2.4applicationsofproductsofvectorsexercises8.2partapartb8.3planesandlinesinspace8.3.1equationsofplanes8.3.2equationsoflinesinspaceexercises8.3partapartb8.4surfacesandspacecurves8.4.1cylinders8.4.2cones8.4.3surfacesofrevolution8.4.4quadricsurfaces8.4.5spacecurves8.4.6cylindricalcoordinatesystem8.4.7sphericalcoordinatesystemexercises8.4partapartbchapter9thedifferentialcalculusformulti-variablefunctions9.1definitionofmulti-variablefunctionsandtheirbasicproperties9.1.1spacer2andrn9.1.2multi-variablefunctions9.1.3visualizationofmulti-variablefunctions9.1.4limitsandcontinuityofmulti-variablefunctionsexercises9.1partapartb9.2partialderivativesandtotaldifferentialsofmulti-variablefunctior9.2.1partialderivatives9.2.2totaldifferentials9.2.3higher-orderpartialderivatives9.2.4directionalderivativesandthegradientexercises9.2partapartb9.3differentiationofmulti-variablecompositeandimplicitfunctions9.3.1partialderivativesandtotaldifferentialsofmulti-variablecompositfunctions9.3.2differentiationofimplicitfunctions9.3.3differentiationofimplicitfunctionsdeterminedbyequationsystemsexercises9.3partapartbchapter10applicationsofmulti-variablefunctions10.1approximatefunctionvaluesbytotaldifferential10.2extremevaluesofmulti-variablefunctions10.2.iunrestrictedextremevalues10.2.2globalmaximaandminima10.2.3themethodofleastsquares10.2.4constrainedextremevalues10.2.5themethodoflagrangemultipliersexercises10.2partapartb10.3applicationsingeometry10.3.1arclengthalongacurve10.3.2tangentlineandnormalplaneofaspacecurve10.3.3tangentplanesandnormallinestoasurface10.3.4"curvatureforplanecurvesexercises10.3partapartbsyntheticexerciseschapter11multipleintegrals11.1conceptandpropertiesofdoubleintegrals11.1.1conceptofdoubleintegrals11.1.2propertiesofdoubleintegralsexercises11.111.2evaluationofdoubleintegrals11.2.1geometricmeaningofdoubleintegrals11.2.2doubleintegralsinrectangularcoordinates11.2.3doubleintegralsinpolarcoordinates11.2.4*integrationbysubstitutionfordoubleintegralsingeneralexercises11.2partapartb11.3tripleintegrals11.3.1conceptandpropertiesoftripleintegrals11.3.2tripleintegralsinrectangularcoordinates11.3.3tripleintegralsincylindricalandsphericalcoordinates11.3.4"integrationbysubstitutionfortripleintegralsingeneralexercises11.3partapartb11.4applicationsofmultipleintegrals11.4.1surfacearea11.4.2thecenterofgravity11.4.3themomentofinertiaexercises11.4partapartbchapter12lineintegralsandsurfaceintegrals12.1lineintegrals12.1.1lineintegralswithrespecttoarclength12.1.2lineintegralswithrespecttocoordinates12.1.3relationsbetweentwotypesoflineintegralsexercises12.1partapartb12.2green"sformulaanditsapplications12.2.1green"sformula12.2.2conditionsforpathindependenceoflineintegralsexercises12.2partapartb12.3surfaceintegrals12.3.1surfaceintegralswithrespecttosurfacearea12.3.2surfaceintegralswithrespecttocoordinatesexercises12.3partapartb12.4gauss"formulaexercises12.4partapartb12.5stokes"formula12.5.1stokes"formula12.5.2conditionsforpathindependenceofspacelineintegralsexercises12.5bibliography 上一篇: 考研数学三提高与冲刺 下一篇: 数学分析选讲 下册 [李永军,魏晓娜,臧子龙 编著] 2012年版