数学分析精读讲义 下册作 者: 杜其奎 等 著出版时间:2012丛编项: 普通高等教育"十二五"规划教材内容简介 《普通高等教育“十二五”规划教材:数学分析精读讲义(套装全2册)》按章节编写,每节内容主要包括:内容精读、疑难解答、典型例题、巩固提高。本书切合实际,十分注意提高学生对数学分析的基本概念、基本定理、基本计算技巧的理解和应用,通过对一些典型例题的讲解与分析,由浅入深、分层次、分类型地介绍微积分学的解题思路,特别注重一法多用、一题多解,同时关注形象思维的培养。期望为读者更有效地掌握微积分学的基本功、打下数学分析坚实的基础,提供适当的帮助。目录《数学分析精读讲义(下册)》目录: 前言 符号说明 第12章数项级数 12.1级数的收敛性 12.2正项级数 12.3一般项级数 第13章函数列与函数项级数 13.1一致收敛性 13.2一致收敛函数列与函数项级数的性质 第14章幂级数 14.1幂级数 14.2函数的幂级数展开 第15章Fourier级数 15.1Fourier级数 15.2以2l为周期的函数的展开式 15.3收敛定理的证明 第16章多元函数的极限与连续 16.1平面点集与多元函数 16.2二元函数的极限 16.3二元函数的连续性 第17章多元函数微分学 17.1可微性 17.2复合函数微分法 17.3方向导数与梯度 17.4Taylor公式与极值问题 第18章隐函数定理及其应用 18.1隐函数 18.2隐函数组 18.3几何应用 18.4条件极值 第19章含参量积分 19.1含参量正常积分 19.2含参量反常积分 19.3Euler积分 第20章曲线积分 20.1第一型曲线积分 20.2第二型曲线积分 第21章重积分 21.1二重积分概念 21.2直角坐标系下二重积分的计算 21.3Green公式·曲线积分与路径的无关性 21.4二重积分的变量变换 21.5三重积分 21.6重积分的应用 21.7n重积分 21.8反常二重积分 第22章曲面积分 22.1第一型曲面积分 22.2第二型曲面积分 22.3Gauss公式与Stokes公式 22.4场论初步 参考文献 名词索引 上一篇: 高等数学(上册 英文版)[北京邮电大学高等数学双语教学组 主编] 2011年版 下一篇: 实用泛函分析