微积分(经管类 第二版)作者:蔡光兴,李德宜 主编出版时间:2011年版内容简介 《微积分(经管类)(第2版)》是依照教育部新的“经济管理类本科数学课程教学基本要求”和“研究生入学考试大纲数学三(经管类)”对该课程的要求,在保持第一版结构科学合理,经济学例题经典丰富,融入数学软件应用、数学家简介、英文数学题及微积分学简史等特色的基础上,对教材内容、体系进行了适当的调整和优化。例题、练习题更加典型丰富,内容包括一元函数微分学及其在经济学中的应用、一元函数积分学及其应用、微分方程、无穷级数和多元函数微积分。《微积分(经管类)(第2版)》内容充实,体系新颖,选例灵活,且有鲜明的应用特点,既可作为高等学校文、经、管类各专业微积分课程的教材,也可供其他相关专业读者使用,对报考研究生的学生及有关专业教师也具有参考价值。目录第1章 函数与Mathematica入门1.1 集合1.1.1 集合的概念1.1.2 集合的运算1.1.3 实数与数轴1.1.4 区间、邻域1.2 函数1.2.1 函数的概念1.2.2 函数的几何特性1.2.3 复合函数和反函数1.2.4 基本初等函数1.3 经济中常用的函数1.3.1 总成本函数1.3.2 收益函数1.3.3 利润函数1.3.4 平均成本函数1.3.5 价格函数1.3.6 需求函数1.3.7 供给函数1.3.8 戈珀兹(Gompertz)曲线1.4 Mathematica入门1.4.1 软件操作简介1.4.2 Mathaematica基本运算操作1.4.3 函数作图1.4.4 微积分中常用运算本章重要概念英文词汇数学家简介(牛顿,Isaac Newton)习题一第2章 极限与连续2.1 极限2.1.1 数列的极限2.1.2 函数的极限2.2 极限的运算法则2.2.1 极限的四则运算法则2.2.2 极限存在的两个准则2.2.3 两个重要极限2.3 无穷小比较2.3.1 无穷小量和无穷大量2.3.2 无穷小量和无穷大量的比较2.4 函数的连续性2.4.1 函数连续的定义2.4.2 函数的间断点2.4.3 连续函数的有关定理2.4.4 闭区间上连续函数的性质本章重要概念英文词汇数学家简介(柯西,Augustin-Louis Cauchy)习题二第3章 导数与微分3.1 导数概念3.1.1 导数概念的引入3.1.2 导数的定义3.1.3 单侧导数3.1.4 可导与连续的关系3.1.5 用导数定义求导数3.1.6 导数的实际意义3.2 求导法则和基本初等函数导数公式3.2.1 导数的四则运算3.2.2 反函数求导法则3.2.3 复合函数求导法则3.2.4 取对数法求导3.2.5 基本初等函数导数公式3.2.6 隐函数求导法则3.2.7 参数方程求导3.2.8 高阶导数3.3 微分3.3.1 微分的定义3.3.2 微分的几何意义3.3.3 基本初等函数的微分公式与微分运算法则3.3.4 微分形式不变性3.3.5 微分在近似计算中的应用本章重要概念英文词汇数学家简介(莱布尼茨,Gottfried Wilhelm Leibniz)习题三第4章 中值定理与导数应用第5章 导数在经济学中的应用第6章 不定积分第7章 定积分第8章 定积分的应用第9章 微分方程第10章 无穷级数第11章 多元函数微积分参考答案