偏微分方程(第二卷 英文版) 作者:(德)索维尼 著 出版时间:2011年版 内容简介 《偏微分方程(第2卷)》是一部两卷集的偏微分方程教材。多变量椭圆,抛物和双曲方程是研究的主要对象,解决了pde和多变量方法之间的关系。本书是第二卷主要讲述了banach空间算子方程的可解性,hilbert空间线性算子和谱理论;线性椭圆微分方程的schauder理论;微分方程弱解;非线性偏微分方程;非线性椭圆系统和微分几何应用。书中各章的独立性较强,有一定偏微分方程基本知识的读者可以独立阅读各章。目次:banach空间中的算子;hilbert空间线性算子;线性椭圆微分方程;非线性偏微分方程;非线性椭圆系统。读者对象:数学专业的本科生,研究生和相关的科研人员。 目录 vii operators in banach spaces 1 fixed point theorems 2 the leray-schauder degree of mapping 3 fundamental properties for the degree of mapping 4 linear operators in banach spaces 5 some historical notices to the chapters iii and vii viii linear operators in hilbert spaces 1 various eigenvalue problems 2 singular integral equations 3 the abstract hilbert space 4 bounded linear operators in hilbert spaces 5 unitary operators 6 completely continuous operators in hilbert spaces 7 spectral theory for completely continuous hermitianoperators 8 the sturm-liouville eigenvalue problem 9 weyl's eigenvalue problem for the laplace operator 9 some historical notices to chapter viii ix linear elliptic differential equations 1 the differential equation △φ+p(x, y)φx+q(x, y)φy=r(x, y) 2 the schwarzian integral formula 3 the riemann-hilbert boundary value problem 4 potential-theoretic estimates. 5 schauder's continuity method 6 existence and regularity theorems 7 the schauder estimates 8 some historical notices to chapter ix x weak solutions of elliptic differential equations 1 sobolev spaces 2 embedding and compactness 3 existence of weak solutions 4 boundedness of weak solutions 5 hslder continuity of weak solutions 6 weak potential-theoretic estimates 7 boundary behavior of weak solutions 8 equations in divergence form 9 green's function for elliptic operators 10 spectral theory of the laplace-beltrami operator 11 some historical notices to chapter x xi nonlinear partial differential equations 1 the fundamental forms and curvatures of a surface 2 two-dimensional parametric integrals 3 quasilinear hyperbolic differential equations and systems ofsecond order (characteristic parameters) 4 cauchy's initial value problem for quasilinear hyperbolicdifferential equations and systems of second order 5 riemann's integration method 6 bernstein's analyticity theorem 7 some historical notices to chapter xi xii nonlinear elliptic systems 1 maximum principles for the h-surface system 2 gradient estimates for nonlinear elliptic systems 3 global estimates for nonlinear systems 4 the dirichlet problem for nonlinear elliptic systems 5 distortion estimates for plane elliptic systems 6 a curvature estimate for minimal surfaces 7 global estimates for conformal mappings with respect toriemannian metrics 8 introduction of conformal parameters into a riemannianmetric 9 the uniformization method for quasilinear elliptic differentialequations and the dirichlet problem 10 an outlook on plateau's problem 11 some historical notices to chapter xii references index
上一篇: 偏微分方程(第一卷 英文版)2011年版
下一篇: 数学与人文(第8辑):数学与求学
|