ANSYS 14.0理论解析与工程应用实例 出版时间:2013年版 内容简介 《CAD/CAM/CAE工程应用丛书·ANSYS系列:ANSYS 14.0理论解析与工程应用实例》全面介绍了有限元方法、单元、模型的建立、网格划分、加载、求解、后处理、线弹性静力学分析、梁结构分析、壳结构分析、非线性分析、屈曲分析、接触分析、装配体分析、阻尼分析、模态分析、瞬态动力学分析、谐响应分析、谱分析、热分析、断裂力学分析、裂纹扩展模拟和转子动力学分析等内容。全书围绕ANSYS软件的功能进行讲解,并给出了大量具有工程背景的实例。《CAD/CAM/CAE工程应用丛书·ANSYS系列:ANSYS 14.0理论解析与工程应用实例》配套光盘提供了共44个实例的视频教程和ANSYS实例文件。《CAD/CAM/CAE工程应用丛书·ANSYS系列:ANSYS 14.0理论解析与工程应用实例》可作为高等学校理工类高年级本科生或硕士研究生学习ANSYS有限元分析软件的教材,也可供从事结构分析的工程技术人员参考使用,同时书中提供的大量实例还可供高级用户参考。 目录 出版说明 前言 第1章 有限元方法与ANSYS 1 1.1 有限元方法的基本原理 1 1.2 ANSYS 14.0的新功能 1 1.2.1 接触分析的改进 2 1.2.2 单元和非线性计算 2 1.2.3 线性动力学 3 1.2.4 材料模型与断裂力学 3 1.3 ANSYS分析范例 4 1.3.1 范例问题描述 4 1.3.2 命令流 4 第2章 单元 6 2.1 单元插值和形函数 6 2.2 单元的形状检查 6 2.2.1 概述 6 2.2.2 长宽比检查 7 2.2.3 偏差角检查 8 2.2.4 平行偏差检查 8 2.2.5 最大顶角检查 9 2.2.6 雅可比比率检查 10 2.2.7 翘曲系数检查 12 2.3 常用单元简介 14 2.3.1 结构质量单元 14 2.3.2 结构杆单元 15 2.3.3 结构实体单元 17 2.3.4 结构壳体单元 24 2.3.5 热质量单元 27 2.3.6 热杆单元 28 2.3.7 热实体单元 31 2.3.8 热壳体单元 36 2.3.9 梁单元 37 2.3.10 弹簧单元 40 2.4 单元的选择流程 45 2.4.1 设置单元筛选菜单 45 2.4.2 根据模型的几何形状选择 46 2.4.3 根据模型的维数选择 47 2.4.4 选择单元的阶数 47 第3章 模型的建立 48 3.1 坐标系 48 3.1.1 坐标系简介 48 3.1.2 坐标系定义 48 3.1.3 坐标系的激活 51 3.2 自下向上建模 51 3.2.1 关键点 51 3.2.2 线 52 3.2.3 面 53 3.2.4 体 53 3.3 自上向下建模 54 3.3.1 定义面 54 3.3.2 定义体 55 3.4 建立有限元模型 56 3.4.1 节点 56 3.4.2 单元 57 3.5 导入CAD模型 59 3.6 参数化建模 60 3.6.1 参数化建模概念 60 3.6.2 使用参数 60 3.6.3 APDL中控制程序 64 3.7 布尔运算 66 3.7.1 交运算 66 3.7.2 加运算 67 3.7.3 减运算 68 3.7.4 分割运算 69 3.7.5 搭接运算 69 3.7.6 互分运算 70 3.7.7 粘接运算 71 第4章 网格划分 72 4.1 网格划分的指导思想 72 4.2 网格划分工具 72 4.3 网格划分尺寸控制 74 4.3.1 智能网格尺寸控制 74 4.3.2 人工网格尺寸控制 76 4.3.3 裂纹尖端网格尺寸控制 79 4.4 网格划分器 79 4.4.1 三角形表面网格划分 80 4.4.2 四边形表面网格划分 80 4.4.3 四面体单元网格划分功能 81 4.4.4 控制四面体单元的改进 81 4.5 网格划分流程 81 4.5.1 设置单元属性 81 4.5.2 设置单元尺寸 82 4.5.3 选择网格划分方法 82 4.5.4 检查网格 84 4.5.5 修改网格 85 第5章 加载 86 5.1 载荷的概念 86 5.2 载荷步、子步和平衡迭代 87 5.3 跟踪中时间的作用 87 5.4 阶跃与斜坡载荷 88 5.5 定义载荷 88 5.5.1 自由度约束 89 5.5.2 对称与反对称约束 89 5.5.3 施加力载荷 91 5.5.4 施加表面载荷 91 5.5.5 施加体积载荷 93 5.5.6 施加惯性载荷 95 5.5.7 施加轴对称载荷和反作用力 96 5.5.8 施加表格型载荷 97 5.5.9 施加函数型载荷 98 5.6 设置载荷步选项 100 5.6.1 通用选项 100 5.6.2 动力学分析选项 102 5.6.3 非线性选项 103 5.6.4 输出控制 103 5.7 创建多载荷步文件 104 第6章 求解 105 6.1 选择求解器 105 6.2 求解器的类型 105 6.2.1 稀疏矩阵直接解法求解器 105 6.2.2 预条件共轭梯度法求解器 106 6.2.3 雅可比共轭梯度法求解器 106 6.2.4 不完全乔里斯基共轭梯度法 求解器 106 6.2.5 二次最小残差求解器 107 6.3 在某些类型结构分析使用特殊 求解控制 107 6.3.1 使用简化求解菜单 107 6.3.2 使用“求解控制”对话框 107 6.4 获得解答 109 6.5 求解多载荷步 109 6.5.1 使用多步求解法 109 6.5.2 使用载荷步文件法 109 第7章 后处理 111 7.1 后处理功能概述 111 7.1.1 ANSYS的后处理类型 111 7.1.2 结果文件 111 7.1.3 后处理可用的数据类型 111 7.2 通用后处理器 112 7.2.1 数据文件选项 112 7.2.2 查看结果总汇 113 7.2.3 读入结果 113 7.2.4 图形显示结果 115 7.2.5 列表显示结果 118 7.2.6 查询结果 119 7.2.7 输出选项 120 7.2.8 单元表 122 7.2.9 路径查看 126 7.2.10 载荷工况 128 7.3 时间-历程后处理器 130 7.3.1 时间-历程变量观察器 130 7.3.2 进入时间-历程后处理器 132 7.3.3 定义变量 132 7.3.4 处理变量并进行计算 133 7.3.5 变量的评价 134 7.3.6 POST26的其他功能 135 第8章 线弹性静力学分析 137 8.1 静力学分析概述 137 8.2 线弹性静力学分析基本理论 137 8.2.1 结构矩阵的导出 137 8.2.2 线弹性静力学求解原理 139 8.3 线弹性静力学分析步骤 142 8.3.1 建立有限元模型 142 8.3.2 激活静力学分析 142 8.3.3 设置“求解控制”对话框 142 8.3.4 施加载荷 143 8.3.5 求解 144 8.3.6 观察结果 145 8.4 线弹性静力学工程实例 145 第9章 梁结构分析 148 9.1 概述 148 9.2 梁横截面概述 148 9.3 理解创建梁横截面 149 9.3.1 定义梁横截面并关联 截面ID号 149 9.3.2 定义梁横截面几何尺寸并设置 截面属性点 149 9.3.3 使用BEAM188 或BEAM189单元 模拟线模型 150 9.4 创建梁横截面 150 9.4.1 使用梁工具去创建普通横截面 151 9.4.2 使用用户定义网格建立自定义 横截面 155 9.4.3 创建具有网格加密和多种材料特性的 自定义截面 156 9.4.4 定义复合截面 156 9.4.5 定义渐变式梁 157 9.5 管理横截面和用户网格库 157 9.6 梁结构分析工程实例 158 第10章 壳结构分析 160 10.1 概述 160 10.2 理解壳体横截面 160 10.3 创建壳体横截面 160 10.3.1 定义壳体横截面并关联一个截面 ID号 161 10.3.2 定义层数据 161 10.3.3 覆盖程序计算的截面属性 161 10.3.4 指定可变厚度的壳体 161 10.3.5 设置截面属性点 161 10.3.6 把面与截面相关联 162 10.3.7 壳截面工具 162 10.4 如何定义变截面壳体 164 10.5 壳体结构分析工程实例 164 第11章 非线性分析 167 11.1 非线性分析种类 167 11.1.1 几何非线性 167 11.1.2 材料非线性 167 11.1.3 状态非线性 167 11.2 几何非线性 168 11.2.1 几何非线性的类型 168 11.2.2 几何非线性基本理论 168 11.2.3 几何非线性分析中的应变种类 170 11.2.4 几何非线性的输入与输出 171 11.3 材料非线性 172 11.3.1 材料非线性的概念 172 11.3.2 弹塑性理论基础 173 11.3.3 常用的弹塑性模型定义方法 178 11.3.4 粘塑性理论基础 184 11.3.5 粘塑性材料模型的定义方法 186 11.3.6 蠕变理论基础 186 11.3.7 蠕变模型的实验数据拟合方法 190 11.3.8 超弹材料理论基础 193 11.3.9 超弹材料实验数据拟合 198 11.4 求解非线性方程 201 11.4.1 非线性方程求解方法 201 11.4.2 非线性收敛准则 203 11.4.3 预测器 205 11.4.4 自适应下降 206 11.4.5 线性搜索 206 11.4.6 弧长法 207 11.5 非线性静态分析步骤 210 11.5.1 建立有限元模型 210 11.5.2 激活静力学分析 210 11.5.3 设置“求解控制”对话框 210 11.5.4 设置分析选项 217 11.5.5 定义载荷 219 11.5.6 设置载荷步选项 219 11.5.7 求解 220 11.5.8 后处理 220 11.6 非线性分析工程实例 220 11.6.1 悬臂板的大变形分析 220 11.6.2 钓鱼竿的非线性分析 222 11.6.3 压力容器的弹塑性分析 225 11.6.4 循环载荷作用的力学响应分析 226 11.6.5 螺栓的应力松弛分析 230 第12章 屈曲分析 232 12.1 屈曲分析的类型 232 12.1.1 非线性屈曲分析 232 12.1.2 特征值屈曲分析 233 12.2 非线性屈曲分析 233 12.2.1 施加载荷增量 233 12.2.2 自动时间步长功能 233 12.2.3 不收敛解 234 12.2.4 施加初始缺陷或扰动 234 12.2.5 注意事项 235 12.3 后屈曲分析 235 12.4 特征值(线性)屈曲分析 步骤 236 12.4.1 基本理论 236 12.4.2 特征值屈曲分析的步骤 237 12.5 屈曲分析工程实例 240 12.5.1 超长杆的特征值屈曲分析 240 12.5.2 薄壁圆筒的特征值屈曲分析 241 12.5.3 铰接薄壳的后屈曲分析 242 第13章 接触分析 245 13.1 概述 245 13.2 接触问题分类 245 13.2.1 面-面接触单元 246 13.2.2 点-面接触单元 246 13.2.3 三维线-线接触 246 13.2.4 线-面接触 246 13.2.5 点-点接触单元 247 13.3 面-面接触分析 247 13.3.1 面-面接触单元简介 247 13.3.2 建立几何模型并划分网格 247 13.3.3 识别接触对 247 13.3.4 指定接触面和目标面 248 13.3.5 定义目标面 249 13.3.6 定义柔体的接触面 253 13.3.7 接触和目标面的几何修正 255 13.3.8 设置实常数和单元关键字选项 257 13.3.9 控制刚性目标面的运动(刚体- 柔体接触) 276 13.3.10 为变形体时间必要的 边界条件 278 13.3.11 定义求解和载荷步选项 278 13.3.12 求解 278 13.3.13 观察结果 278 13.4 热接触模拟 279 13.4.1 热接触行为与接触状态 279 13.4.2 自由热表面 280 13.4.3 目标面上的温度 280 13.4.4 模拟热传导 280 13.4.5 模拟对流 281 13.4.6 模拟辐射 281 13.4.7 模拟摩擦生热 282 13.4.8 模拟外部热通量 282 13.5 接触分析工程实例 283 13.5.1 过盈装配分析 283 13.5.2 滚压成型分析 285 13.5.3 橡胶圆筒的大变形接触分析 289 13.5.4 平面拉弯成型分析 291 13.5.5 圆柱滚子轴承的接触分析 294 13.5.6 球体与平面的接触分析 297 13.5.7 橡胶密封圈分析 299 13.5.8 螺栓连接有限元分析 301 第14章 装配体分析 306 14.1 概述 306 14.2 实体-实体和壳体-壳体的 装配体 307 14.3 壳体-实体的装配体 308 14.4 基于面的约束 310 14.4.1 定义基于面的约束 311 14.4.2 定义影响范围(PINB) 312 14.4.3 基于面约束的自由度 312 14.4.4 指定一个局部坐标系 312 14.4.5 分布力约束的几点说明 313 14.4.6 刚性面约束的几点说明 314 14.4.7 模拟梁-实体的装配体 314 14.5 模拟刚体 314 14.6 发现过度约束并消除 315 14.7 使用内部MPC的限制和注意 事项 315 14.8 装配体分析工程实例 316 14.8.1 轴-支撑结构装配体分析 316 14.8.2 壳体-实体装配体分析 317 第15章 阻尼分析 320 15.1 ANSYS支持的阻尼类型 320 15.2 瞬态分析和模态分析支持的 阻尼类型 320 15.2.1 基本理论 320 15.2.2 输入方法 321 15.3 谐响应分析支持的阻尼类型 321 15.3.1 基本理论 321 15.3.2 输入方法 322 15.4 模态叠加法支持的阻尼类型 324 15.4.1 基本理论 324 15.4.2 输入方法 325 15.5 瑞雷阻尼 326 第16章 模态分析 327 16.1 模态分析的概念 327 16.2 模态分析基本理论 327 16.2.1 无阻尼模态分析理论 327 16.2.2 有阻尼模态分析理论 328 16.2.3 重复的固有频率 328 16.2.4 复数特征解 328 16.3 模态计算方法 329 16.3.1 分块Lanczos法 329 16.3.2 子空间法 329 16.3.3 PowerDynamics法 329 16.3.4 缩减法 330 16.3.5 非对称法 330 16.3.6 阻尼法 330 16.3.7 QR阻尼法 330 16.4 模态分析基本流程 330 16.4.1 建立有限元模型 330 16.4.2 划分网格 331 16.4.3 激活模态求解 331 16.4.4 设置模态分析选项 331 16.4.5 定义载荷 334 16.4.6 设置载荷步选项 334 16.4.7 求解 334 16.4.8 观察结果 334 16.5 缩减法模态分析 336 16.5.1 程序选择主自由度 336 16.5.2 用户选择主自由度 336 16.5.3 选择主自由度的总体建议 337 16.6 预应力模态分析 337 16.7 大变形预应力模态分析 338 16.8 模态分析工程实例 338 16.8.1 齿轮装配体模态分析 338 16.8.2 多材料的复模态分析 343 16.8.3 旋转叶片的预应力模态分析 345 第17章 瞬态动力学分析 349 17.1 瞬态动力学分析的概念 349 17.2 瞬态动力学的理论基础 349 17.2.1 假设和限制 349 17.2.2 求解瞬态动力学方程的基本 方法 349 17.2.3 积分时间步长选取准则 353 17.2.4 自动时间步长 355 17.3 完全法瞬态动力学分析步骤 355 17.3.1 建立有限元模型 355 17.3.2 激活完全法求解瞬态动力学 356 17.3.3 设置初始条件 356 17.3.4 设置“求解控制”对话框 358 17.3.5 设置分析选项 360 17.3.6 施加载荷 361 17.3.7 设置载荷步选项 361 17.3.8 求解 361 17.3.9 观察结果 361 17.4 缩减法瞬态动力学分析 步骤 362 17.4.1 建立有限元模型 362 17.4.2 激活缩减法求解瞬态动力学 362 17.4.3 设置分析选项 363 17.4.4 定义主自由度 363 17.4.5 定义间隙条件 363 17.4.6 定义初始条件 364 17.4.7 定义载荷 365 17.4.8 定义载荷步 365 17.4.9 求解 368 17.4.10 观察结果 368 17.4.11 扩展求解 368 17.4.12 观察已扩展解的结果 370 17.5 模态叠加法瞬态动力学分析 步骤 370 17.5.1 建立有限元模型 370 17.5.2 进行模态分析 370 17.5.3 激活模态叠加法求解瞬态 动力学 371 17.5.4 设置分析选项 371 17.5.5 定义间隙条件 371 17.5.6 定义初始条件 372 17.5.7 定义载荷 372 17.5.8 定义载荷步 372 17.5.9 求解 372 17.5.10 观察结果 372 17.5.11 扩展求解 372 17.6 有预应力瞬态动力学分析 372 17.6.1 有预应力的完全法瞬态动力 学分析 372 17.6.2 有预应力的缩减法瞬态动力 学分析 373 17.6.3 有预应力的模态叠加法瞬态动力 学分析 373 17.7 瞬态动力学分析工程实例 373 17.7.1 破碎锤的瞬态动力学分析 373 17.7.2 冲击载荷作用悬臂梁的阻尼振动 分析 377 17.7.3 滑动摩擦接触分析 379 第18章 谐响应分析 383 18.1 谐响应分析的概念 383 18.2 谐响应分析理论基础 383 18.3 完全法谐响应分析步骤 384 18.3.1 建立有限元模型 384 18.3.2 激活谐响应分析 384 18.3.3 设置谐响应分析选项 385 18.3.4 定义载荷 386 18.3.5 定义载荷步 387 18.3.6 求解 388 18.3.7 观察结果 388 18.4 缩减法谐响应分析 388 18.4.1 建立有限元模型 388 18.4.2 激活谐响应分析 388 18.4.3 设置缩减法求解 388 18.4.4 定义主自由度 389 18.4.5 定义载荷 389 18.4.6 定义载荷步 389 18.4.7 求解 389 18.4.8 观察缩减法求解的结果 389 18.4.9 扩展求解 390 18.4.10 观察已扩展解的结果 391 18.5 模态叠加法谐响应分析 392 18.5.1 建立有限元模型 392 18.5.2 获取模态分析解 392 18.5.3 激活谐响应分析 392 18.5.4 设置模态叠加法求解 392 18.5.5 定义载荷 393 18.5.6 定义载荷步 393 18.5.7 开始求解 394 18.5.8 扩展模态叠加解 394 18.5.9 观察结果 394 18.6 有预应力的谐响应分析 394 18.6.1 有预应力的完全法谐响应 分析 394 18.6.2 有预应力的缩减法谐响应 分析 394 18.6.3 有预应力的模态叠加法谐响应 分析 395 18.7 谐响应分析工程实例 395 18.7.1 碟片弹簧的谐响应分析 395 18.7.2 扭杆的谐响应分析 397 18.7.3 楔形梁的谐响应分析 399 第19章 谱分析 402 19.1 谱分析的概念 402 19.2 谱分析的种类 402 19.2.1 响应谱分析 402 19.2.2 动力设计分析方法 403 19.2.3 随机振动分析(功率 谱密度) 403 19.2.4 确定性分析与概率分析 403 19.3 谱分析的基本理论 403 19.3.1 ANSYS的假设和限制 403 19.3.2 响应谱分析的基本原理 403 19.3.3 参与因子和模态系数 404 19.3.4 合并模态 405 19.3.5 随机振动方法 407 19.4 单点响应谱分析步骤 410 19.4.1 建立有限元模型 410 19.4.2 获得模态解 410 19.4.3 激活谱分析 410 19.4.4 设置分析选项 411 19.4.5 定义载荷步选项 411 19.4.6 开始求解 413 19.4.7 退出求解器 413 19.4.8 扩展模态 414 19.4.9 合并模态 415 19.4.10 观察结果 417 19.5 随机振动(PSD)分析步骤 417 19.5.1 建立有限元模型 417 19.5.2 获得模态解 417 19.5.3 激活谱分析 417 19.5.4 设置分析选项 417 19.5.5 定义载荷步选项 417 19.5.6 定义载荷 418 19.5.7 计算上述PSD激励参与因子 419 19.5.8 处理多个PSD激励 420 19.5.9 设置输出控制项 421 19.5.10 开始求解 421 19.5.11 合并模态 421 19.5.12 观察结果 422 19.6 随机振动分析结果应用 424 19.6.1 随机振动结果与失效计算 424 19.6.2 随机疲劳失效 424 19.7 多点响应谱分析 426 19.7.1 建立有限元模型 426 19.7.2 获得模态解 426 19.7.3 激活谱分析 426 19.7.4 设置谱分析类型 426 19.7.5 定义载荷步选项 427 19.7.6 定义载荷 428 19.7.7 计算上述多点响应谱激励参与 因子 428 19.7.8 合并模态 428 19.7.9 观察结果 428 19.8 谱分析工程实例 428 19.8.1 简支梁的随机振动分析 428 19.8.2 框架结构的单点响应谱分析 430 第20章 热分析 433 20.1 热分析的目的 433 20.2 热分析的基本理论 433 20.2.1 热分析的有限元控制方程 433 20.2.2 热分析的求解技术 436 20.3 稳态热分析的步骤 437 20.3.1 建立有限元模型 437 20.3.2 激活稳态热分析 437 20.3.3 设置分析选项 438 20.3.4 定义载荷 439 20.3.5 定义载荷步选项 441 20.3.6 求解 443 20.3.7 后处理 443 20.4 瞬态传热 444 20.4.1 建立有限元模型 444 20.4.2 激活瞬态热分析 444 20.4.3 建立初始条件 445 20.4.4 设置载荷步选项 446 20.4.5 非线性选项 448 20.4.6 后处理 449 20.4.7 相变问题 449 20.5 热-结构耦合分析 450 20.5.1 热应力分析的分类 450 20.5.2 间接法进行热应力分析的 步骤 451 20.6 热分析工程实例 451 20.6.1 多材料热接触的传热分析 451 20.6.2 液-固体相变分析 453 第21章 断裂力学分析 456 21.1 断裂力学分析基础 456 21.1.1 裂纹类型 456 21.1.2 断裂力学参数 456 21.2 求解断裂力学问题 458 21.2.1 建模裂纹尖端区域模型 459 21.2.2 计算断裂参数 460 21.3 J积分 460 21.3.1 理解域积分法 460 21.3.2 J积分计算过程 462 21.4 能量释放率 464 21.4.1 使用VCCT计算能量释放率 464 21.4.2 能量释放率计算步骤 466 21.5 应力强度因子 468 21.5.1 基于相互作用积分法计算应力 强度因子 468 21.5.2 使用位移外推法计算应力强度 因子 471 21.6 断裂力学计算工程实例 472 21.6.1 薄板边裂纹的应力强度因子 计算 472 21.6.2 冲击载荷作用下的动态应力强度 因子计算 474 21.6.3 三维应力强度因子的计算 479 21.6.4 界面裂纹能量释放率的计算 483 21.6.5 热应力作用下的断裂力学 分析 486 第22章 裂纹扩展模拟 489 22.1 基于VCCT的裂纹扩展模拟 489 22.2 VCCT裂纹扩展模拟过程 489 22.2.1 建立预先定义裂纹路径的有限元 模型 489 22.2.2 执行能量释放率计算 490 22.2.3 执行裂纹扩展计算 490 22.2.4 裂纹扩展集定义 491 22.3 裂纹扩展 491 22.4 断裂准则 492 22.4.1 临界能量释放率准则 492 22.4.2 线性断裂准则 493 22.4.3 双线性断裂准则 493 22.4.4 B-K断裂准则 494 22.4.5 修正B-K断裂准则 494 22.4.6 幂率断裂准则 495 22.4.7 用户自定义断裂准则 496 22.5 裂纹扩展分析工程实例 498 第23章 转子动力学分析 504 23.1 概述 504 23.1.1 通用动力学方程 504 23.1.2 有限单元法模拟转子动力学的 优点 504 23.2 转子动力学分析工具 505 23.2.1 常用的命令 505 23.2.2 常用的单元 505 23.2.3 常用的术语 505 23.3 建立转子动力学模型 508 23.3.1 建立模型 508 23.3.2 建立轴承模型 508 23.3.3 建立模型其他部件 511 23.4 施加载荷和约束 512 23.4.1 瞬态分析时施加旋转力 512 23.4.2 谐响应分析时施加旋转力 512 23.5 求解转子动力学问题 513 23.5.1 添加阻尼 513 23.5.2 指定旋转速度并且考虑陀螺 效应 513 23.5.3 求解随后预应力结构坎贝尔 分析 513 23.5.4 求解承受同步或不同步力的谐 响应问题 514 23.5.5 选择合适的求解器 514 23.6 转子动力学的后处理 515 23.6.1 处理复数结果 515 23.6.2 观察运动轨迹 516 23.6.3 输出轨迹特性 517 23.6.4 动画显示轨迹 517 23.6.5 完成瞬态分析后观察轨迹 517 23.6.6 后处理轴承和反力 517 23.6.7 坎贝尔图 518 23.7 转子动力学分析工程实例 521 23.7.1 单盘转子的临界转速分析 521 23.7.2 转子系统不平衡激励的谐响应 分析 522 23.7.3 转子系统启动时的瞬态动力学 分析 526 23.7.4 冲击载荷作用下的转子系统响应 分析 532 上一篇: ANSYS 14.0/FLOTRAN理论解析与工程应用实例 下一篇: 有限元分析:ANSYS理论与应用 第三版 2013年版