您当前的位置:首页 > 汽车先进技术译丛 汽车电力电子装置与电机驱动器手册 高清可编辑文字版 > 下载地址1
汽车先进技术译丛 汽车电力电子装置与电机驱动器手册 高清可编辑文字版
- 名 称:汽车先进技术译丛 汽车电力电子装置与电机驱动器手册 高清可编辑文字版 - 下载地址1
- 类 别:汽车书籍
- 下载地址:[下载地址1]
- 提 取 码:
- 浏览次数:3
新闻评论(共有 0 条评论) |
资料介绍
汽车先进技术译丛 汽车电力电子装置与电机驱动器手册 高清可编辑文字版
作者:Ali Emadi 著
出版时间:2014
丛编项: 汽车先进技术
内容简介
《汽车先进技术译丛:汽车电力电子装置与电机驱动器手册》共五个部分。介绍了传统汽车的电气系统、先进汽车的新型电气系统构架以及汽车控制网络协议;汽车功率半导体器件、传感器以及汽车电子的ESD防护措施;DC/DC变换器、 AC/DC整流器、DC/AC逆变器、AC/AC变换器等汽车功率电子转换器;有刷直流电机、感应电动机、开关磁阻电机、无刷直流电机的驱动器;电动汽车的主要部件以及蓄电池、超级电容器、飞轮等储能系统;混合动力电动汽车的构型及其驱动系统,以及混合动力和燃料电池电动汽车的控制。本手册还介绍了电力电子技术在汽车转向、车辆安全和乘员安全中的应用,为与汽车相关的工业界、政府和学术界的工程师、学生、研究人员以及管理人员提供了一个关于汽车电气系统的全面参考。
目录
译者的话
前言
第一篇 汽车动力系统
第1章 传统汽车
1.1 引言
1.2 电气系统的演进
1.2.1 控制策略和电路拓扑结构
1.2.2 功率总线拓扑结构
1.2.3 部件
1.3 传统的汽车电气系统
1.3.1 电池及其充电系统
1.3.2 起动电动机系统
1.3.3 管理系统
1.4 电气连接系统
1.4.1 熔丝
1.4.2 不同保护装置的性能比较
1.5 负载控制:汽车控制网络协议
1.5.1 控制器局域网络(CAN协议)
1.5.2 区域互联网络(LIN协议)
1.5.3 Byteflight协议
1.5.4 时间触发协议(TTP/C)
1.6 新的电气系统构架
1.6.1 电气安全
1.6.2 电压对部件的影响
1.7 其他电气系统构架
1.7.1 高频交流总线系统
1.7.2 双电压制式直流总线
参考文献
第2章 混合动力电动汽车
2.1 并联式构型
2.2 串联式构型
2.3 混联式构型
2.4插电式混合动力
参考文献
第3章 混合动力驱动系统
3.1 基本概念
3.2 串联混合动力驱动系统
3.3 并联混合动力驱动系统
3.3.1 采用转矩耦合的并联混合动力驱动系统
3.3.2 采用转速耦合的并联混合动力驱动系统
3.4 采用可选转矩耦合或转速耦合装置的驱动系统
3.5 采用转矩耦合和转速耦合的并联串联混合动力驱动系统
3.6 燃料电池驱动的混合动力系统
参考文献
第4章 电动汽车
4.1 引言
4.2 混合动力电动汽车
4.2.1 并联式混合动力
4.2.2 串联式混合动力
4.3 电动汽车的主要部件
4.3.1 电机
4.3.2 速度控制器
4.3.3 DC/DC变换器
4.4 电动汽车的主要安全部件
4.5 仪表
4.6 电动汽车的主要辅件
4.7 电动汽车上能量存储装置的类型
4.7.1 蓄电池
4.7.2 当今可用的电池类型
4.7.3 飞轮
4.7.4 超级电容器
4.8 排放性能
4.9 太阳能汽车
4.10 燃料电池汽车
4.10.1 概述
4.10.2 燃料电池
4.11 电动汽车参考文献调研
参考文献
第5章 汽车系统功率管理和分配的优化
5.1 引言
5.2 汽车功率/能量管理和分配架构
5.2.1 发电装置
5.2.2 能量存储
5.2.3 功率总线
5.2.4 电气负载
5.2.5 电力电子
5.2.6 功率管理控制器
5.3 优化的功率管理系统策略
5.3.1 动态资源分配
5.3.2 汽车部件的实际约束
5.3.3 功率不间断要求
5.3.4 电能质量
5.3.5 系统稳定性
5.3.6 故障诊断和预测
5.4 示例:基于博弈论优化的HEV管理和控制策略
5.4.1 系统动力学
5.4.2 策略设计
5.4.3 博弈论的方法
5.4.4 仿真结果
5.5 总结
参考文献
第二篇 汽车半导体器件、组件及传感器
第6章 汽车功率半导体器件
6.1 引言
6.2 二极管:整流、续流和钳位器件
6.2.1 整流二极管
6.2.2 续流二极管
6.2.3 稳压二极管
6.2.4 肖特基二极管
6.3 功率MOSFET:低压负载驱动
6.3.1 MOSFET基础
6.3.2 MOSFET特性
6.4 IGBT:高压功率开关
6.4.1 IGBT基础
6.4.2 IGBT功率模块
6.4.3 点火装置的IGBT
6.5 功率集成电路和智能功率器件
6.6 新兴器件技术:超结和碳化硅器件
6.7 功率损耗和热管理
6.8 总结
参考文献
第7章 超级电容器
7.1 双电层电容器理论
7.2 模型和单元均衡
7.3 容量准则
7.4 转换器连接
7.5 超级电容器与电池组合
参考文献
第8章 飞轮
8.1 飞轮原理
8.2 飞轮在混合动力汽车中的应用
8.3 储能系统的展望
参考文献
第9章 汽车电子的ESD防护
9.1 引言
9.2 ESD失效和ESD测试模型
9.3 片上ESD防护
参考文献
第10章 传感器
10.1 引言
10.2 电子控制单元的架构
10.3 电压和电流测量
10.4 温度
10.5 加速度
10.6 压力
10.7 速度、位置和位移
10.8其他传感器
10.9汽车环境的可靠性约束
10.1 0总结
参考文献
第三篇 汽车功率电子变换器
第11章 DC/DC变换器
11.1 使用DC/DC变换器的原因
11.2 DC/DC变换器基础
11.3 DC/DC变换器类型
11.4 降压、升压、降压升压变换器的共同点
11.5 降压变换器
11.6 升压变换器
11.7 降压升压变换器
11.8 隔离的逆变器驱动的变换器
11.9 推挽式变换器
11.10 半桥式变换器
11.11 全桥式变换器
11.12 其他变换器类型
11.13 控制
11.14 基本控制电路
11.15 需要考虑的重点
11.16 仿真VS分析方法
11.17 损耗计算
11.18 功率器件选择
11.19 EMI
11.20 其他实用的变换器开发中考量事项
参考文献
第12章 AC/DC整流器
12.1 二极管整流器
12.1.1 主要特性和电路结构
12.1.2 三相全桥二极管整流器分析
12.1.3 二极管整流器的输入相电流和输出电流的分析
12.1.4 直流环节功率的计算
12.1.5 不同的负载条件下直流环节电容的计算
12.1.6 动态制动单元设计
12.2 晶闸管整流器
12.2.1 拓扑结构与工作模式
12.2.2 触发延迟角的控制方案
12.2.3 三相全桥晶闸管整流器的分析
参考文献
第13章 非平衡运行的三相电压型整流器
13.1 系统介绍和工作原理
13.2 非平衡运行条件下的PWM升压型整流器分析
13.2.1 非平衡运行条件下PWM升压型整流器的谐波抑制
13.3 消除非平衡运行条件下PWM升压型整流器的输入与输出端谐波的控制方案
13.3.1 输入电压非平衡但输入阻抗平衡时消除输入与输出端谐波的控制方案
13.3.2 输入电压不平衡且输入阻抗不平衡时PWM升压型整流器消除输入/
输出谐波的控制方案推导
13.4 结论
参考文献
第14章 DC/AC逆变器
14.1 DC到AC的变换
14.2 逆变器类型
14.3 电压源逆变器
14.3.1 单相逆变器
14.3.2 三相逆变器
14.4 电流源逆变器
14.5 控制技术
14.5.1 电压控制技术
14.5.2 电流控制技术
14.6 多电平逆变器
14.7 硬开关效应
14.7.1 开关损耗
14.7.2 开关应力
14.7.3 EMI问题
14.7.4 对绝缘性能的影响
14.7.5 电机轴承电流
14.7.6 电机端子过电压
14.8谐振逆变器
14.8.1 软开关原理
14.8.2 谐振直流环节逆变器(RLDC)
14.9汽车辅助电机的控制
14.9.1 换向器电机
14.9.2 开关换向电机
术语表
参考文献
第15章 AC/AC变换器
15.1 引言
15.2 AC/AC变换器拓扑结构
15.2.1 间接型AC/AC变换器
15.2.2 直接型AC/AC变换器
15.3 总结
参考文献
第16章 电力电子技术与混合动力和燃料电池电动汽车的控制
16.1 引言
16.2 混合动力汽车
16.2.1 串联式混合动力驱动系统
16.2.2 并联式混合动力驱动系统
16.3 燃料电池汽车
16.3.1 燃料电池汽车的驱动系统
16.3.2 燃料电池汽车动力系统注意事项
16.4 对电力电子技术的需求[6,11,15]
16.5 驱动电机控制策略
16.5.1 转差频率控制
16.5.2 驱动电机的矢量控制
16.5.3 无传感器操作
16.6 串联式混合动力汽车的APU控制系统
16.7 燃料电池作为APU使用[13,23,24]
参考文献
第四篇 汽车电机的驱动器
第17章 汽车用有刷直流电机
17.1 运行基本原理
17.1.1 引言
17.1.2 有刷直流电动机驱动的转矩
17.1.3 温度对有刷直流电动机驱动的影响
17.2 串励直流电机驱动
第18章 感应电动机驱动
18.1 引言
18.2 感应电动机的转矩和转速控制
18.3 感应电动机电力电子控制基础
18.4 感应电动机VCD运行模式
18.5 感应电动机的标量和矢量控制原理
18.5.1 标量控制
18.5.2 感应电动机磁场定向控制(矢量控制)基本原理
18.6 电动汽车的感应电动机驱动
18.7 结论
附录感应电动机的静态模型
参考文献
第19章 基于数字信号处理器的感应电动机驱动矢量控制
19.1 引言
19.2 空间矢量控制
19.3 实验结果
19.4 结论
参考文献
第20章 开关磁阻电机驱动控制系统
20.1 引言
20.2 历史背景
20.3 基本原理
20.4 SRM驱动系统的控制原理
20.4.1 开环转矩控制策略
20.5 SRM驱动的闭环转矩控制
20.6 SRM闭环速度控制
20.7 工业应用:车辆冷却系统
参考文献
第21章 开关磁阻电机的噪声和振动
21.1 引言
21.2 SRM数值模型的模态分析
21.3 定子模态分析的有限元结果
21.4 低振动SRM设计选择
21.5 平滑壳体对谐振频率的影响
21.6 结论
参考文献
第22章 电机的模型和参数辨识
22.1 引言
22.2 研究示例:噪声对于同步电机频域参数估计的影响
22.2.1 问题描述
22.2.2 参数估计方法
22.2.3 研究过程
22.2.4 结果分析
22.2.5 结论
22.3 实心转子同步电机参数的最大似然估计
22.3.1 简介
22.3.2 静态同步电机模型的时域参数计算
22.3.3 过程和测量中噪声的影响
22.3.4 参数计算的最大似然法
22.3.5 用SSFR测试数据的计算步骤
22.3.6 结果
22.4 感应电机的建模和参数确定
22.4.1 模型确定
22.4.2 参数评估
22.4.3 灵敏度分析
22.4.4 对工作条件的参数映射
22.4.5 磁心损耗计算
22.4.6 模型验证
22.4.7 结论
22.5 开关磁阻电机的建模与参数确定
22.5.1 简介
22.5.2 静态时SRM的电感模型
22.5.3 静态测试数据的参数确定
22.5.4 在线工作状态下SRM的电感模型
22.5.5 采用双层递归神经网络估算阻尼电流
22.5.6 估计结果和实验验证
22.5.7 结论
附录
附录A
附录B
附录C
参考文献
第23章 无刷直流电机及其驱动
23.1 BLDC基本原理
23.2 控制原理和控制策略
23.3 转矩的产生
23.4 优点和缺点
23.5 转矩脉动
23.6 设计考虑
23.7 BLDC的有限元分析和设计考虑
23.8永久磁铁
23.9BLDC仿真模型
23.1 0无传感器
参考文献
第24章 电动汽车和混合动力汽车用电动机及其控制器的试验
24.1 引言
24.2 电动汽车标准化的现状
24.2.1 电动汽车和标准化[1]
24.2.2 标准化机构在该领域的作用
24.2.3 汽车零部件的标准化
24.2.4 日本的标准化进程[2]
24.3 使用电动机/发电机组的试验程序[3]
24.3.1 电动机
24.3.2 控制器
24.3.3 试验程序的运用
24.3.4 型式试验项目的分析
24.4 采用涡流测功机的试验程序
24.4.1 试验策略
24.4.2 试验程序
24.4.3 关于试验程序的讨论
24.5 采用交流测功器的试验程序[4]
24.5.1 试验策略
24.5.2 试验项目
24.5.3 试验程序
24.6 在车内环境中的电动机和控制器的试验
24.6.1 硬件在环的概念
24.6.2 硬件在环在电动机/控制器试验中的应用
24.6.3 试验说明
24.6.4 试验结果
24.7 总结
参考文献
第五篇 其他汽车应用
第25章 起动发电一体机
25.1 汽车上的ISA子系统
25.2 动力耦合架构
25.2.1 曲轴安装ISA构型
25.2.2 偏置安装ISA系统结构
25.3 ISA系统的功能与性能
25.3.1 技术状况
25.3.2 ISA子系统的功能
25.4 ISA子系统的部件[7]
25.4.1 双电压输出发电机
25.4.2 带12V抽头的36V电池
25.4.3 典型的ISA电气系统
25.4.4 带中性电感的多功能逆变器
25.4.5 电机
25.4.6 逆变器和整流器
25.4.7 DC/DC变换器
25.5 ISA的系统问题
25.5.1 能量存储系统和ISA系统
25.5.2 ISA冷却方式
25.5.3 其他问题
25.6 总结
参考文献
第26章 具有容错功能的汽车用调速电机拖动系统
26.1 引言
26.1.1 可重组控制器
26.2 数字滞环调节
26.2.1 DDHR的电流重构算法
参考文献
第27章 汽车转向系统
27.1 引言
27.2 转向系统
27.2.1 手动转向
27.2.2 液压助力转向
27.2.3 电液助力转向
27.2.4 电动助力转向
27.3 先进转向系统
27.3.1 四轮转向
27.3.2 下一代转向系统
参考文献
第28章 大电流的电机拖动:现代汽车技术的新挑战
28.1 背景
28.2 大电流电机拖动的电磁设计
28.3 多变换器系统的稳定性
28.4 能量转化
28.5 对控制的影响
第29章 电力电子技术在汽车及乘员安全上的应用
29.1 引言
29.2 汽车安全中的电力电子技术
29.2.1 CAN总线在汽车电力电子模块网络上的应用
29.2.2 发动机安全系统
29.2.3 防盗报警系统
29.2.4 自适应巡航控制(ACC)
29.2.5 倒车传感及泊车系统
29.3 电力电子学在乘员安全中的应用
29.3.1 安全带控制系统
29.3.2 电动车窗安全系统
29.3.3 安全气囊
29.3.4 驾驶人辅助系统及疲劳监测
29.4 结论
参考文献
第30章 混合动力汽车的驱动和控制系统
30.1 引言
30.2 控制策略
30.2.1 恒温器式串联控制策略
30.2.2 功率跟随式串联控制策略
30.2.3 并联式内燃机辅助控制策略
30.2.4 并联式电机辅助控制策略
30.2.5 自适应控制策略
30.2.6 模糊控制策略
30.3 电力电子控制系统和控制策略
30.4 当今的混合动力汽车及其控制策略
30.4.1 本田Insight的控制策略
30.4.2 丰田Prius的控制策略
30.5 总结
参考文献
第31章 车用电池技术
31.1 引言
31.1.1 电池技术
31.1.2 当前对汽车电池的要求
31.2 未来汽车电池
31.3 电池与超级电容器的结合
31.4 电池监测与充电控制
31.5 结论
参考文献
目录目录
前言
译者的话
第一篇 汽车动力系统
第1章 传统汽车
1.1 引言
1.2 电气系统的演进
1.2.1 控制策略和电路拓扑结构
1.2.2 功率总线拓扑结构
1.2.3 部件
1.3 传统的汽车电气系统
1.3.1 电池及其充电系统
1.3.2 起动电动机系统
1.3.3 管理系统
1.4 电气连接系统
1.4.1 熔丝
1.4.2 不同保护装置的性能比较
1.5 负载控制:汽车控制网络协议
1.5.1 控制器局域网络(CAN协议)
1.5.2 区域互联网络(LIN协议)
1.5.3 Byteflight协议
1.5.4 时间触发协议(TTP/C)
1.6 新的电气系统构架
1.6.1 电气安全
1.6.2 电压对部件的影响
1.7 其他电气系统构架
1.7.1 高频交流总线系统
1.7.2 双电压制式直流总线
参考文献
第2章 混合动力电动汽车
2.1 并联式构型
2.2 串联式构型
2.3 混联式构型
2.4插电式混合动力
参考文献
第3章 混合动力驱动系统
3.1 基本概念
3.2 串联混合动力驱动系统
3.3 并联混合动力驱动系统
3.3.1 采用转矩耦合的并联混合动力驱动系统
3.3.2 采用转速耦合的并联混合动力驱动系统
3.4 采用可选转矩耦合或转速耦合装置的驱动系统
3.5 采用转矩耦合和转速耦合的并联串联混合动力驱动系统
3.6 燃料电池驱动的混合动力系统
参考文献
第4章 电动汽车
4.1 引言
4.2 混合动力电动汽车
4.2.1 并联式混合动力
4.2.2 串联式混合动力
4.3 电动汽车的主要部件
4.3.1 电机
4.3.2 速度控制器
4.3.3 DC/DC变换器
4.4 电动汽车的主要安全部件
4.5 仪表
4.6 电动汽车的主要辅件
4.7 电动汽车上能量存储装置的类型
4.7.1 蓄电池
4.7.2 当今可用的电池类型
4.7.3 飞轮
4.7.4 超级电容器
4.8排放性能
4.9太阳能汽车
4.1 0燃料电池汽车
4.1 0.1 概述
4.1 0.2 燃料电池
4.1 1电动汽车参考文献调研
参考文献
第5章 汽车系统功率管理和分配的优化
5.1 引言
5.2 汽车功率/能量管理和分配架构
5.2.1 发电装置
5.2.2 能量存储
5.2.3 功率总线
5.2.4 电气负载
5.2.5 电力电子
5.2.6 功率管理控制器
5.3 优化的功率管理系统策略
5.3.1 动态资源分配
5.3.2 汽车部件的实际约束
5.3.3 功率不间断要求
5.3.4 电能质量
5.3.5 系统稳定性
5.3.6 故障诊断和预测
5.4 示例:基于博弈论优化的HEV管理和控制策略
5.4.1 系统动力学
5.4.2 策略设计
5.4.3 博弈论的方法
5.4.4 仿真结果
5.5 总结
参考文献
第二篇 汽车半导体器件、组件及传感器
第6章 汽车功率半导体器件
6.1 引言
6.2 二极管:整流、续流和钳位器件
6.2.1 整流二极管
6.2.2 续流二极管
6.2.3 稳压二极管
6.2.4 肖特基二极管
6.3 功率MOSFET:低压负载驱动
6.3.1 MOSFET基础
6.3.2 MOSFET特性
6.4 IGBT:高压功率开关
6.4.1 IGBT基础
6.4.2 IGBT功率模块
6.4.3 点火装置的IGBT
6.5 功率集成电路和智能功率器件
6.6 新兴器件技术:超结和碳化硅器件
6.7 功率损耗和热管理
6.8总结
参考文献
第7章 超级电容器
7.1 双电层电容器理论
7.2 模型和单元均衡
7.3 容量准则
7.4 转换器连接
7.5 超级电容器与电池组合
参考文献
第8章 飞轮
8.1 飞轮原理
8.2 飞轮在混合动力汽车中的应用
8.3 储能系统的展望
参考文献
第9章 汽车电子的ESD防护
9.1 引言
9.2 ESD失效和ESD测试模型
9.3 片上ESD防护
参考文献
第10章 传感器
10.1 引言
10.2 电子控制单元的架构
10.3 电压和电流测量
10.4 温度
10.5 加速度
10.6 压力
10.7 速度、位置和位移
10.8其他传感器
10.9汽车环境的可靠性约束
10.1 0总结
参考文献
第三篇 汽车功率电子变换器
第11章 DC/DC变换器
11.1 使用DC/DC变换器的原因
11.2 DC/DC变换器基础
11.3 DC/DC变换器类型
11.4 降压、升压、降压升压变换器的共同点
11.5 降压变换器
11.6 升压变换器
11.7 降压升压变换器
11.8隔离的逆变器驱动的变换器
11.9推挽式变换器
11.1 0半桥式变换器
11.1 1全桥式变换器
11.1 2其他变换器类型
11.1 3控制
11.1 4基本控制电路
11.1 5需要考虑的重点
11.1 6仿真VS分析方法
11.1 7损耗计算
11.1 8功率器件选择
11.1 9EMI
11.2 0其他实用的变换器开发中考量事项
参考文献
第12章 AC/DC整流器
12.1 二极管整流器
12.1.1 主要特性和电路结构
12.1.2 三相全桥二极管整流器分析
12.1.3 二极管整流器的输入相电流和输出电流的分析
12.1.4 直流环节功率的计算
12.1.5 不同的负载条件下直流环节电容的计算
12.1.6 动态制动单元设计
12.2 晶闸管整流器
12.2.1 拓扑结构与工作模式
12.2.2 触发延迟角的控制方案
12.2.3 三相全桥晶闸管整流器的分析
参考文献
第13章 非平衡运行的三相电压型整流器
13.1 系统介绍和工作原理
13.2 非平衡运行条件下的PWM升压型整流器分析
13.2.1 非平衡运行条件下PWM升压型整流器的谐波抑制
13.3 消除非平衡运行条件下PWM升压型整流器的输入与输出端谐波的控制方案
13.3.1 输入电压非平衡但输入阻抗平衡时消除输入与输出端谐波的控制方案
13.3.2 输入电压不平衡且输入阻抗不平衡时PWM升压型整流器消除输入/
输出谐波的控制方案推导
13.4 结论
参考文献
第14章 DC/AC逆变器
14.1 DC到AC的变换
14.2 逆变器类型
14.3 电压源逆变器
14.3.1 单相逆变器
14.3.2 三相逆变器
14.4 电流源逆变器
14.5 控制技术
14.5.1 电压控制技术
14.5.2 电流控制技术
14.6 多电平逆变器
14.7 硬开关效应
14.7.1 开关损耗
14.7.2 开关应力
14.7.3 EMI问题
14.7.4 对绝缘性能的影响
14.7.5 电机轴承电流
14.7.6 电机端子过电压
14.8谐振逆变器
14.8.1 软开关原理
14.8.2 谐振直流环节逆变器(RLDC)
14.9汽车辅助电机的控制
14.9.1 换向器电机
14.9.2 开关换向电机
术语表
参考文献
第15章 AC/AC变换器
15.1 引言
15.2 AC/AC变换器拓扑结构
15.2.1 间接型AC/AC变换器
15.2.2 直接型AC/AC变换器
15.3 总结
参考文献
第16章 电力电子技术与混合动力和燃料电池电动汽车的控制
16.1 引言
16.2 混合动力汽车
16.2.1 串联式混合动力驱动系统
16.2.2 并联式混合动力驱动系统
16.3 燃料电池汽车
16.3.1 燃料电池汽车的驱动系统
16.3.2 燃料电池汽车动力系统注意事项
16.4 对电力电子技术的需求[6,11,15]
16.5 驱动电机控制策略
16.5.1 转差频率控制
16.5.2 驱动电机的矢量控制
16.5.3 无传感器操作
16.6 串联式混合动力汽车的APU控制系统
16.7 燃料电池作为APU使用[13,23,24]
参考文献
第四篇 汽车电机的驱动器
第17章 汽车用有刷直流电机
17.1 运行基本原理
17.1.1 引言
17.1.2 有刷直流电动机驱动的转矩
17.1.3 温度对有刷直流电动机驱动的影响
17.2 串励直流电机驱动
第18章 感应电动机驱动
18.1 引言
18.2 感应电动机的转矩和转速控制
18.3 感应电动机电力电子控制基础
18.4 感应电动机VCD运行模式
18.5 感应电动机的标量和矢量控制原理
18.5.1 标量控制
18.5.2 感应电动机磁场定向控制(矢量控制)基本原理
18.6 电动汽车的感应电动机驱动
18.7 结论
附录感应电动机的静态模型
参考文献
第19章 基于数字信号处理器的感应电动机驱动矢量控制
19.1 引言
19.2 空间矢量控制
19.3 实验结果
19.4 结论
参考文献
第20章 开关磁阻电机驱动控制系统
20.1 引言
20.2 历史背景
20.3 基本原理
20.4 SRM驱动系统的控制原理
20.4.1 开环转矩控制策略
20.5 SRM驱动的闭环转矩控制
20.6 SRM闭环速度控制
20.7 工业应用:车辆冷却系统
参考文献
第21章 开关磁阻电机的噪声和振动
21.1 引言
21.2 SRM数值模型的模态分析
21.3 定子模态分析的有限元结果
21.4 低振动SRM设计选择
21.5 平滑壳体对谐振频率的影响
21.6 结论
参考文献
第22章 电机的模型和参数辨识
22.1 引言
22.2 研究示例:噪声对于同步电机频域参数估计的影响
22.2.1 问题描述
22.2.2 参数估计方法
22.2.3 研究过程
22.2.4 结果分析
22.2.5 结论
22.3 实心转子同步电机参数的最大似然估计
22.3.1 简介
22.3.2 静态同步电机模型的时域参数计算
22.3.3 过程和测量中噪声的影响
22.3.4 参数计算的最大似然法
22.3.5 用SSFR测试数据的计算步骤
22.3.6 结果
22.4 感应电机的建模和参数确定
22.4.1 模型确定
22.4.2 参数评估
22.4.3 灵敏度分析
22.4.4 对工作条件的参数映射
22.4.5 磁心损耗计算
22.4.6 模型验证
22.4.7 结论
22.5 开关磁阻电机的建模与参数确定
22.5.1 简介
22.5.2 静态时SRM的电感模型
22.5.3 静态测试数据的参数确定
22.5.4 在线工作状态下SRM的电感模型
22.5.5 采用双层递归神经网络估算阻尼电流
22.5.6 估计结果和实验验证
22.5.7 结论
附录
附录A
附录B
附录C
参考文献
第23章 无刷直流电机及其驱动
23.1 BLDC基本原理
23.2 控制原理和控制策略
23.3 转矩的产生
23.4 优点和缺点
23.5 转矩脉动
23.6 设计考虑
23.7 BLDC的有限元分析和设计考虑
23.8永久磁铁
23.9BLDC仿真模型
23.1 0无传感器
参考文献
第24章 电动汽车和混合动力汽车用电动机及其控制器的试验
24.1 引言
24.2 电动汽车标准化的现状
24.2.1 电动汽车和标准化[1]
24.2.2 标准化机构在该领域的作用
24.2.3 汽车零部件的标准化
24.2.4 日本的标准化进程[2]
24.3 使用电动机/发电机组的试验程序[3]
24.3.1 电动机
24.3.2 控制器
24.3.3 试验程序的运用
24.3.4 型式试验项目的分析
24.4 采用涡流测功机的试验程序
24.4.1 试验策略
24.4.2 试验程序
24.4.3 关于试验程序的讨论
24.5 采用交流测功器的试验程序[4]
24.5.1 试验策略
24.5.2 试验项目
24.5.3 试验程序
24.6 在车内环境中的电动机和控制器的试验
24.6.1 硬件在环的概念
24.6.2 硬件在环在电动机/控制器试验中的应用
24.6.3 试验说明
24.6.4 试验结果
24.7 总结
参考文献
第五篇 其他汽车应用
第25章 起动发电一体机
25.1 汽车上的ISA子系统
25.2 动力耦合架构
25.2.1 曲轴安装ISA构型
25.2.2 偏置安装ISA系统结构
25.3 ISA系统的功能与性能
25.3.1 技术状况
25.3.2 ISA子系统的功能
25.4 ISA子系统的部件[7]
25.4.1 双电压输出发电机
25.4.2 带12V抽头的36V电池
25.4.3 典型的ISA电气系统
25.4.4 带中性电感的多功能逆变器
25.4.5 电机
25.4.6 逆变器和整流器
25.4.7 DC/DC变换器
25.5 ISA的系统问题
25.5.1 能量存储系统和ISA系统
25.5.2 ISA冷却方式
25.5.3 其他问题
25.6 总结
参考文献
第26章 具有容错功能的汽车用调速电机拖动系统
26.1 引言
26.1.1 可重组控制器
26.2 数字滞环调节
26.2.1 DDHR的电流重构算法
参考文献
第27章 汽车转向系统
27.1 引言
27.2 转向系统
27.2.1 手动转向
27.2.2 液压助力转向
27.2.3 电液助力转向
27.2.4 电动助力转向
27.3 先进转向系统
27.3.1 四轮转向
27.3.2 下一代转向系统
参考文献
第28章 大电流的电机拖动:现代汽车技术的新挑战
28.1 背景
28.2 大电流电机拖动的电磁设计
28.3 多变换器系统的稳定性
28.4 能量转化
28.5 对控制的影响
第29章 电力电子技术在汽车及乘员安全上的应用
29.1 引言
29.2 汽车安全中的电力电子技术
29.2.1 CAN总线在汽车电力电子模块网络上的应用
29.2.2 发动机安全系统
29.2.3 防盗报警系统
29.2.4 自适应巡航控制(ACC)
29.2.5 倒车传感及泊车系统
29.3 电力电子学在乘员安全中的应用
29.3.1 安全带控制系统
29.3.2 电动车窗安全系统
29.3.3 安全气囊
29.3.4 驾驶人辅助系统及疲劳监测
29.4 结论
参考文献
第30章 混合动力汽车的驱动和控制系统
30.1 引言
30.2 控制策略
30.2.1 恒温器式串联控制策略
30.2.2 功率跟随式串联控制策略
30.2.3 并联式内燃机辅助控制策略
30.2.4 并联式电机辅助控制策略
30.2.5 自适应控制策略
30.2.6 模糊控制策略
30.3 电力电子控制系统和控制策略
30.4 当今的混合动力汽车及其控制策略
30.4.1 本田Insight的控制策略
30.4.2 丰田Prius的控制策略
30.5 总结
参考文献
第31章 车用电池技术
31.1 引言
31.1.1 电池技术
31.1.2 当前对汽车电池的要求
31.2 未来汽车电池
31.3 电池与超级电容器的结合
31.4 电池监测与充电控制
31.5 结论
参考文献
作者:Ali Emadi 著
出版时间:2014
丛编项: 汽车先进技术
内容简介
《汽车先进技术译丛:汽车电力电子装置与电机驱动器手册》共五个部分。介绍了传统汽车的电气系统、先进汽车的新型电气系统构架以及汽车控制网络协议;汽车功率半导体器件、传感器以及汽车电子的ESD防护措施;DC/DC变换器、 AC/DC整流器、DC/AC逆变器、AC/AC变换器等汽车功率电子转换器;有刷直流电机、感应电动机、开关磁阻电机、无刷直流电机的驱动器;电动汽车的主要部件以及蓄电池、超级电容器、飞轮等储能系统;混合动力电动汽车的构型及其驱动系统,以及混合动力和燃料电池电动汽车的控制。本手册还介绍了电力电子技术在汽车转向、车辆安全和乘员安全中的应用,为与汽车相关的工业界、政府和学术界的工程师、学生、研究人员以及管理人员提供了一个关于汽车电气系统的全面参考。
目录
译者的话
前言
第一篇 汽车动力系统
第1章 传统汽车
1.1 引言
1.2 电气系统的演进
1.2.1 控制策略和电路拓扑结构
1.2.2 功率总线拓扑结构
1.2.3 部件
1.3 传统的汽车电气系统
1.3.1 电池及其充电系统
1.3.2 起动电动机系统
1.3.3 管理系统
1.4 电气连接系统
1.4.1 熔丝
1.4.2 不同保护装置的性能比较
1.5 负载控制:汽车控制网络协议
1.5.1 控制器局域网络(CAN协议)
1.5.2 区域互联网络(LIN协议)
1.5.3 Byteflight协议
1.5.4 时间触发协议(TTP/C)
1.6 新的电气系统构架
1.6.1 电气安全
1.6.2 电压对部件的影响
1.7 其他电气系统构架
1.7.1 高频交流总线系统
1.7.2 双电压制式直流总线
参考文献
第2章 混合动力电动汽车
2.1 并联式构型
2.2 串联式构型
2.3 混联式构型
2.4插电式混合动力
参考文献
第3章 混合动力驱动系统
3.1 基本概念
3.2 串联混合动力驱动系统
3.3 并联混合动力驱动系统
3.3.1 采用转矩耦合的并联混合动力驱动系统
3.3.2 采用转速耦合的并联混合动力驱动系统
3.4 采用可选转矩耦合或转速耦合装置的驱动系统
3.5 采用转矩耦合和转速耦合的并联串联混合动力驱动系统
3.6 燃料电池驱动的混合动力系统
参考文献
第4章 电动汽车
4.1 引言
4.2 混合动力电动汽车
4.2.1 并联式混合动力
4.2.2 串联式混合动力
4.3 电动汽车的主要部件
4.3.1 电机
4.3.2 速度控制器
4.3.3 DC/DC变换器
4.4 电动汽车的主要安全部件
4.5 仪表
4.6 电动汽车的主要辅件
4.7 电动汽车上能量存储装置的类型
4.7.1 蓄电池
4.7.2 当今可用的电池类型
4.7.3 飞轮
4.7.4 超级电容器
4.8 排放性能
4.9 太阳能汽车
4.10 燃料电池汽车
4.10.1 概述
4.10.2 燃料电池
4.11 电动汽车参考文献调研
参考文献
第5章 汽车系统功率管理和分配的优化
5.1 引言
5.2 汽车功率/能量管理和分配架构
5.2.1 发电装置
5.2.2 能量存储
5.2.3 功率总线
5.2.4 电气负载
5.2.5 电力电子
5.2.6 功率管理控制器
5.3 优化的功率管理系统策略
5.3.1 动态资源分配
5.3.2 汽车部件的实际约束
5.3.3 功率不间断要求
5.3.4 电能质量
5.3.5 系统稳定性
5.3.6 故障诊断和预测
5.4 示例:基于博弈论优化的HEV管理和控制策略
5.4.1 系统动力学
5.4.2 策略设计
5.4.3 博弈论的方法
5.4.4 仿真结果
5.5 总结
参考文献
第二篇 汽车半导体器件、组件及传感器
第6章 汽车功率半导体器件
6.1 引言
6.2 二极管:整流、续流和钳位器件
6.2.1 整流二极管
6.2.2 续流二极管
6.2.3 稳压二极管
6.2.4 肖特基二极管
6.3 功率MOSFET:低压负载驱动
6.3.1 MOSFET基础
6.3.2 MOSFET特性
6.4 IGBT:高压功率开关
6.4.1 IGBT基础
6.4.2 IGBT功率模块
6.4.3 点火装置的IGBT
6.5 功率集成电路和智能功率器件
6.6 新兴器件技术:超结和碳化硅器件
6.7 功率损耗和热管理
6.8 总结
参考文献
第7章 超级电容器
7.1 双电层电容器理论
7.2 模型和单元均衡
7.3 容量准则
7.4 转换器连接
7.5 超级电容器与电池组合
参考文献
第8章 飞轮
8.1 飞轮原理
8.2 飞轮在混合动力汽车中的应用
8.3 储能系统的展望
参考文献
第9章 汽车电子的ESD防护
9.1 引言
9.2 ESD失效和ESD测试模型
9.3 片上ESD防护
参考文献
第10章 传感器
10.1 引言
10.2 电子控制单元的架构
10.3 电压和电流测量
10.4 温度
10.5 加速度
10.6 压力
10.7 速度、位置和位移
10.8其他传感器
10.9汽车环境的可靠性约束
10.1 0总结
参考文献
第三篇 汽车功率电子变换器
第11章 DC/DC变换器
11.1 使用DC/DC变换器的原因
11.2 DC/DC变换器基础
11.3 DC/DC变换器类型
11.4 降压、升压、降压升压变换器的共同点
11.5 降压变换器
11.6 升压变换器
11.7 降压升压变换器
11.8 隔离的逆变器驱动的变换器
11.9 推挽式变换器
11.10 半桥式变换器
11.11 全桥式变换器
11.12 其他变换器类型
11.13 控制
11.14 基本控制电路
11.15 需要考虑的重点
11.16 仿真VS分析方法
11.17 损耗计算
11.18 功率器件选择
11.19 EMI
11.20 其他实用的变换器开发中考量事项
参考文献
第12章 AC/DC整流器
12.1 二极管整流器
12.1.1 主要特性和电路结构
12.1.2 三相全桥二极管整流器分析
12.1.3 二极管整流器的输入相电流和输出电流的分析
12.1.4 直流环节功率的计算
12.1.5 不同的负载条件下直流环节电容的计算
12.1.6 动态制动单元设计
12.2 晶闸管整流器
12.2.1 拓扑结构与工作模式
12.2.2 触发延迟角的控制方案
12.2.3 三相全桥晶闸管整流器的分析
参考文献
第13章 非平衡运行的三相电压型整流器
13.1 系统介绍和工作原理
13.2 非平衡运行条件下的PWM升压型整流器分析
13.2.1 非平衡运行条件下PWM升压型整流器的谐波抑制
13.3 消除非平衡运行条件下PWM升压型整流器的输入与输出端谐波的控制方案
13.3.1 输入电压非平衡但输入阻抗平衡时消除输入与输出端谐波的控制方案
13.3.2 输入电压不平衡且输入阻抗不平衡时PWM升压型整流器消除输入/
输出谐波的控制方案推导
13.4 结论
参考文献
第14章 DC/AC逆变器
14.1 DC到AC的变换
14.2 逆变器类型
14.3 电压源逆变器
14.3.1 单相逆变器
14.3.2 三相逆变器
14.4 电流源逆变器
14.5 控制技术
14.5.1 电压控制技术
14.5.2 电流控制技术
14.6 多电平逆变器
14.7 硬开关效应
14.7.1 开关损耗
14.7.2 开关应力
14.7.3 EMI问题
14.7.4 对绝缘性能的影响
14.7.5 电机轴承电流
14.7.6 电机端子过电压
14.8谐振逆变器
14.8.1 软开关原理
14.8.2 谐振直流环节逆变器(RLDC)
14.9汽车辅助电机的控制
14.9.1 换向器电机
14.9.2 开关换向电机
术语表
参考文献
第15章 AC/AC变换器
15.1 引言
15.2 AC/AC变换器拓扑结构
15.2.1 间接型AC/AC变换器
15.2.2 直接型AC/AC变换器
15.3 总结
参考文献
第16章 电力电子技术与混合动力和燃料电池电动汽车的控制
16.1 引言
16.2 混合动力汽车
16.2.1 串联式混合动力驱动系统
16.2.2 并联式混合动力驱动系统
16.3 燃料电池汽车
16.3.1 燃料电池汽车的驱动系统
16.3.2 燃料电池汽车动力系统注意事项
16.4 对电力电子技术的需求[6,11,15]
16.5 驱动电机控制策略
16.5.1 转差频率控制
16.5.2 驱动电机的矢量控制
16.5.3 无传感器操作
16.6 串联式混合动力汽车的APU控制系统
16.7 燃料电池作为APU使用[13,23,24]
参考文献
第四篇 汽车电机的驱动器
第17章 汽车用有刷直流电机
17.1 运行基本原理
17.1.1 引言
17.1.2 有刷直流电动机驱动的转矩
17.1.3 温度对有刷直流电动机驱动的影响
17.2 串励直流电机驱动
第18章 感应电动机驱动
18.1 引言
18.2 感应电动机的转矩和转速控制
18.3 感应电动机电力电子控制基础
18.4 感应电动机VCD运行模式
18.5 感应电动机的标量和矢量控制原理
18.5.1 标量控制
18.5.2 感应电动机磁场定向控制(矢量控制)基本原理
18.6 电动汽车的感应电动机驱动
18.7 结论
附录感应电动机的静态模型
参考文献
第19章 基于数字信号处理器的感应电动机驱动矢量控制
19.1 引言
19.2 空间矢量控制
19.3 实验结果
19.4 结论
参考文献
第20章 开关磁阻电机驱动控制系统
20.1 引言
20.2 历史背景
20.3 基本原理
20.4 SRM驱动系统的控制原理
20.4.1 开环转矩控制策略
20.5 SRM驱动的闭环转矩控制
20.6 SRM闭环速度控制
20.7 工业应用:车辆冷却系统
参考文献
第21章 开关磁阻电机的噪声和振动
21.1 引言
21.2 SRM数值模型的模态分析
21.3 定子模态分析的有限元结果
21.4 低振动SRM设计选择
21.5 平滑壳体对谐振频率的影响
21.6 结论
参考文献
第22章 电机的模型和参数辨识
22.1 引言
22.2 研究示例:噪声对于同步电机频域参数估计的影响
22.2.1 问题描述
22.2.2 参数估计方法
22.2.3 研究过程
22.2.4 结果分析
22.2.5 结论
22.3 实心转子同步电机参数的最大似然估计
22.3.1 简介
22.3.2 静态同步电机模型的时域参数计算
22.3.3 过程和测量中噪声的影响
22.3.4 参数计算的最大似然法
22.3.5 用SSFR测试数据的计算步骤
22.3.6 结果
22.4 感应电机的建模和参数确定
22.4.1 模型确定
22.4.2 参数评估
22.4.3 灵敏度分析
22.4.4 对工作条件的参数映射
22.4.5 磁心损耗计算
22.4.6 模型验证
22.4.7 结论
22.5 开关磁阻电机的建模与参数确定
22.5.1 简介
22.5.2 静态时SRM的电感模型
22.5.3 静态测试数据的参数确定
22.5.4 在线工作状态下SRM的电感模型
22.5.5 采用双层递归神经网络估算阻尼电流
22.5.6 估计结果和实验验证
22.5.7 结论
附录
附录A
附录B
附录C
参考文献
第23章 无刷直流电机及其驱动
23.1 BLDC基本原理
23.2 控制原理和控制策略
23.3 转矩的产生
23.4 优点和缺点
23.5 转矩脉动
23.6 设计考虑
23.7 BLDC的有限元分析和设计考虑
23.8永久磁铁
23.9BLDC仿真模型
23.1 0无传感器
参考文献
第24章 电动汽车和混合动力汽车用电动机及其控制器的试验
24.1 引言
24.2 电动汽车标准化的现状
24.2.1 电动汽车和标准化[1]
24.2.2 标准化机构在该领域的作用
24.2.3 汽车零部件的标准化
24.2.4 日本的标准化进程[2]
24.3 使用电动机/发电机组的试验程序[3]
24.3.1 电动机
24.3.2 控制器
24.3.3 试验程序的运用
24.3.4 型式试验项目的分析
24.4 采用涡流测功机的试验程序
24.4.1 试验策略
24.4.2 试验程序
24.4.3 关于试验程序的讨论
24.5 采用交流测功器的试验程序[4]
24.5.1 试验策略
24.5.2 试验项目
24.5.3 试验程序
24.6 在车内环境中的电动机和控制器的试验
24.6.1 硬件在环的概念
24.6.2 硬件在环在电动机/控制器试验中的应用
24.6.3 试验说明
24.6.4 试验结果
24.7 总结
参考文献
第五篇 其他汽车应用
第25章 起动发电一体机
25.1 汽车上的ISA子系统
25.2 动力耦合架构
25.2.1 曲轴安装ISA构型
25.2.2 偏置安装ISA系统结构
25.3 ISA系统的功能与性能
25.3.1 技术状况
25.3.2 ISA子系统的功能
25.4 ISA子系统的部件[7]
25.4.1 双电压输出发电机
25.4.2 带12V抽头的36V电池
25.4.3 典型的ISA电气系统
25.4.4 带中性电感的多功能逆变器
25.4.5 电机
25.4.6 逆变器和整流器
25.4.7 DC/DC变换器
25.5 ISA的系统问题
25.5.1 能量存储系统和ISA系统
25.5.2 ISA冷却方式
25.5.3 其他问题
25.6 总结
参考文献
第26章 具有容错功能的汽车用调速电机拖动系统
26.1 引言
26.1.1 可重组控制器
26.2 数字滞环调节
26.2.1 DDHR的电流重构算法
参考文献
第27章 汽车转向系统
27.1 引言
27.2 转向系统
27.2.1 手动转向
27.2.2 液压助力转向
27.2.3 电液助力转向
27.2.4 电动助力转向
27.3 先进转向系统
27.3.1 四轮转向
27.3.2 下一代转向系统
参考文献
第28章 大电流的电机拖动:现代汽车技术的新挑战
28.1 背景
28.2 大电流电机拖动的电磁设计
28.3 多变换器系统的稳定性
28.4 能量转化
28.5 对控制的影响
第29章 电力电子技术在汽车及乘员安全上的应用
29.1 引言
29.2 汽车安全中的电力电子技术
29.2.1 CAN总线在汽车电力电子模块网络上的应用
29.2.2 发动机安全系统
29.2.3 防盗报警系统
29.2.4 自适应巡航控制(ACC)
29.2.5 倒车传感及泊车系统
29.3 电力电子学在乘员安全中的应用
29.3.1 安全带控制系统
29.3.2 电动车窗安全系统
29.3.3 安全气囊
29.3.4 驾驶人辅助系统及疲劳监测
29.4 结论
参考文献
第30章 混合动力汽车的驱动和控制系统
30.1 引言
30.2 控制策略
30.2.1 恒温器式串联控制策略
30.2.2 功率跟随式串联控制策略
30.2.3 并联式内燃机辅助控制策略
30.2.4 并联式电机辅助控制策略
30.2.5 自适应控制策略
30.2.6 模糊控制策略
30.3 电力电子控制系统和控制策略
30.4 当今的混合动力汽车及其控制策略
30.4.1 本田Insight的控制策略
30.4.2 丰田Prius的控制策略
30.5 总结
参考文献
第31章 车用电池技术
31.1 引言
31.1.1 电池技术
31.1.2 当前对汽车电池的要求
31.2 未来汽车电池
31.3 电池与超级电容器的结合
31.4 电池监测与充电控制
31.5 结论
参考文献
目录目录
前言
译者的话
第一篇 汽车动力系统
第1章 传统汽车
1.1 引言
1.2 电气系统的演进
1.2.1 控制策略和电路拓扑结构
1.2.2 功率总线拓扑结构
1.2.3 部件
1.3 传统的汽车电气系统
1.3.1 电池及其充电系统
1.3.2 起动电动机系统
1.3.3 管理系统
1.4 电气连接系统
1.4.1 熔丝
1.4.2 不同保护装置的性能比较
1.5 负载控制:汽车控制网络协议
1.5.1 控制器局域网络(CAN协议)
1.5.2 区域互联网络(LIN协议)
1.5.3 Byteflight协议
1.5.4 时间触发协议(TTP/C)
1.6 新的电气系统构架
1.6.1 电气安全
1.6.2 电压对部件的影响
1.7 其他电气系统构架
1.7.1 高频交流总线系统
1.7.2 双电压制式直流总线
参考文献
第2章 混合动力电动汽车
2.1 并联式构型
2.2 串联式构型
2.3 混联式构型
2.4插电式混合动力
参考文献
第3章 混合动力驱动系统
3.1 基本概念
3.2 串联混合动力驱动系统
3.3 并联混合动力驱动系统
3.3.1 采用转矩耦合的并联混合动力驱动系统
3.3.2 采用转速耦合的并联混合动力驱动系统
3.4 采用可选转矩耦合或转速耦合装置的驱动系统
3.5 采用转矩耦合和转速耦合的并联串联混合动力驱动系统
3.6 燃料电池驱动的混合动力系统
参考文献
第4章 电动汽车
4.1 引言
4.2 混合动力电动汽车
4.2.1 并联式混合动力
4.2.2 串联式混合动力
4.3 电动汽车的主要部件
4.3.1 电机
4.3.2 速度控制器
4.3.3 DC/DC变换器
4.4 电动汽车的主要安全部件
4.5 仪表
4.6 电动汽车的主要辅件
4.7 电动汽车上能量存储装置的类型
4.7.1 蓄电池
4.7.2 当今可用的电池类型
4.7.3 飞轮
4.7.4 超级电容器
4.8排放性能
4.9太阳能汽车
4.1 0燃料电池汽车
4.1 0.1 概述
4.1 0.2 燃料电池
4.1 1电动汽车参考文献调研
参考文献
第5章 汽车系统功率管理和分配的优化
5.1 引言
5.2 汽车功率/能量管理和分配架构
5.2.1 发电装置
5.2.2 能量存储
5.2.3 功率总线
5.2.4 电气负载
5.2.5 电力电子
5.2.6 功率管理控制器
5.3 优化的功率管理系统策略
5.3.1 动态资源分配
5.3.2 汽车部件的实际约束
5.3.3 功率不间断要求
5.3.4 电能质量
5.3.5 系统稳定性
5.3.6 故障诊断和预测
5.4 示例:基于博弈论优化的HEV管理和控制策略
5.4.1 系统动力学
5.4.2 策略设计
5.4.3 博弈论的方法
5.4.4 仿真结果
5.5 总结
参考文献
第二篇 汽车半导体器件、组件及传感器
第6章 汽车功率半导体器件
6.1 引言
6.2 二极管:整流、续流和钳位器件
6.2.1 整流二极管
6.2.2 续流二极管
6.2.3 稳压二极管
6.2.4 肖特基二极管
6.3 功率MOSFET:低压负载驱动
6.3.1 MOSFET基础
6.3.2 MOSFET特性
6.4 IGBT:高压功率开关
6.4.1 IGBT基础
6.4.2 IGBT功率模块
6.4.3 点火装置的IGBT
6.5 功率集成电路和智能功率器件
6.6 新兴器件技术:超结和碳化硅器件
6.7 功率损耗和热管理
6.8总结
参考文献
第7章 超级电容器
7.1 双电层电容器理论
7.2 模型和单元均衡
7.3 容量准则
7.4 转换器连接
7.5 超级电容器与电池组合
参考文献
第8章 飞轮
8.1 飞轮原理
8.2 飞轮在混合动力汽车中的应用
8.3 储能系统的展望
参考文献
第9章 汽车电子的ESD防护
9.1 引言
9.2 ESD失效和ESD测试模型
9.3 片上ESD防护
参考文献
第10章 传感器
10.1 引言
10.2 电子控制单元的架构
10.3 电压和电流测量
10.4 温度
10.5 加速度
10.6 压力
10.7 速度、位置和位移
10.8其他传感器
10.9汽车环境的可靠性约束
10.1 0总结
参考文献
第三篇 汽车功率电子变换器
第11章 DC/DC变换器
11.1 使用DC/DC变换器的原因
11.2 DC/DC变换器基础
11.3 DC/DC变换器类型
11.4 降压、升压、降压升压变换器的共同点
11.5 降压变换器
11.6 升压变换器
11.7 降压升压变换器
11.8隔离的逆变器驱动的变换器
11.9推挽式变换器
11.1 0半桥式变换器
11.1 1全桥式变换器
11.1 2其他变换器类型
11.1 3控制
11.1 4基本控制电路
11.1 5需要考虑的重点
11.1 6仿真VS分析方法
11.1 7损耗计算
11.1 8功率器件选择
11.1 9EMI
11.2 0其他实用的变换器开发中考量事项
参考文献
第12章 AC/DC整流器
12.1 二极管整流器
12.1.1 主要特性和电路结构
12.1.2 三相全桥二极管整流器分析
12.1.3 二极管整流器的输入相电流和输出电流的分析
12.1.4 直流环节功率的计算
12.1.5 不同的负载条件下直流环节电容的计算
12.1.6 动态制动单元设计
12.2 晶闸管整流器
12.2.1 拓扑结构与工作模式
12.2.2 触发延迟角的控制方案
12.2.3 三相全桥晶闸管整流器的分析
参考文献
第13章 非平衡运行的三相电压型整流器
13.1 系统介绍和工作原理
13.2 非平衡运行条件下的PWM升压型整流器分析
13.2.1 非平衡运行条件下PWM升压型整流器的谐波抑制
13.3 消除非平衡运行条件下PWM升压型整流器的输入与输出端谐波的控制方案
13.3.1 输入电压非平衡但输入阻抗平衡时消除输入与输出端谐波的控制方案
13.3.2 输入电压不平衡且输入阻抗不平衡时PWM升压型整流器消除输入/
输出谐波的控制方案推导
13.4 结论
参考文献
第14章 DC/AC逆变器
14.1 DC到AC的变换
14.2 逆变器类型
14.3 电压源逆变器
14.3.1 单相逆变器
14.3.2 三相逆变器
14.4 电流源逆变器
14.5 控制技术
14.5.1 电压控制技术
14.5.2 电流控制技术
14.6 多电平逆变器
14.7 硬开关效应
14.7.1 开关损耗
14.7.2 开关应力
14.7.3 EMI问题
14.7.4 对绝缘性能的影响
14.7.5 电机轴承电流
14.7.6 电机端子过电压
14.8谐振逆变器
14.8.1 软开关原理
14.8.2 谐振直流环节逆变器(RLDC)
14.9汽车辅助电机的控制
14.9.1 换向器电机
14.9.2 开关换向电机
术语表
参考文献
第15章 AC/AC变换器
15.1 引言
15.2 AC/AC变换器拓扑结构
15.2.1 间接型AC/AC变换器
15.2.2 直接型AC/AC变换器
15.3 总结
参考文献
第16章 电力电子技术与混合动力和燃料电池电动汽车的控制
16.1 引言
16.2 混合动力汽车
16.2.1 串联式混合动力驱动系统
16.2.2 并联式混合动力驱动系统
16.3 燃料电池汽车
16.3.1 燃料电池汽车的驱动系统
16.3.2 燃料电池汽车动力系统注意事项
16.4 对电力电子技术的需求[6,11,15]
16.5 驱动电机控制策略
16.5.1 转差频率控制
16.5.2 驱动电机的矢量控制
16.5.3 无传感器操作
16.6 串联式混合动力汽车的APU控制系统
16.7 燃料电池作为APU使用[13,23,24]
参考文献
第四篇 汽车电机的驱动器
第17章 汽车用有刷直流电机
17.1 运行基本原理
17.1.1 引言
17.1.2 有刷直流电动机驱动的转矩
17.1.3 温度对有刷直流电动机驱动的影响
17.2 串励直流电机驱动
第18章 感应电动机驱动
18.1 引言
18.2 感应电动机的转矩和转速控制
18.3 感应电动机电力电子控制基础
18.4 感应电动机VCD运行模式
18.5 感应电动机的标量和矢量控制原理
18.5.1 标量控制
18.5.2 感应电动机磁场定向控制(矢量控制)基本原理
18.6 电动汽车的感应电动机驱动
18.7 结论
附录感应电动机的静态模型
参考文献
第19章 基于数字信号处理器的感应电动机驱动矢量控制
19.1 引言
19.2 空间矢量控制
19.3 实验结果
19.4 结论
参考文献
第20章 开关磁阻电机驱动控制系统
20.1 引言
20.2 历史背景
20.3 基本原理
20.4 SRM驱动系统的控制原理
20.4.1 开环转矩控制策略
20.5 SRM驱动的闭环转矩控制
20.6 SRM闭环速度控制
20.7 工业应用:车辆冷却系统
参考文献
第21章 开关磁阻电机的噪声和振动
21.1 引言
21.2 SRM数值模型的模态分析
21.3 定子模态分析的有限元结果
21.4 低振动SRM设计选择
21.5 平滑壳体对谐振频率的影响
21.6 结论
参考文献
第22章 电机的模型和参数辨识
22.1 引言
22.2 研究示例:噪声对于同步电机频域参数估计的影响
22.2.1 问题描述
22.2.2 参数估计方法
22.2.3 研究过程
22.2.4 结果分析
22.2.5 结论
22.3 实心转子同步电机参数的最大似然估计
22.3.1 简介
22.3.2 静态同步电机模型的时域参数计算
22.3.3 过程和测量中噪声的影响
22.3.4 参数计算的最大似然法
22.3.5 用SSFR测试数据的计算步骤
22.3.6 结果
22.4 感应电机的建模和参数确定
22.4.1 模型确定
22.4.2 参数评估
22.4.3 灵敏度分析
22.4.4 对工作条件的参数映射
22.4.5 磁心损耗计算
22.4.6 模型验证
22.4.7 结论
22.5 开关磁阻电机的建模与参数确定
22.5.1 简介
22.5.2 静态时SRM的电感模型
22.5.3 静态测试数据的参数确定
22.5.4 在线工作状态下SRM的电感模型
22.5.5 采用双层递归神经网络估算阻尼电流
22.5.6 估计结果和实验验证
22.5.7 结论
附录
附录A
附录B
附录C
参考文献
第23章 无刷直流电机及其驱动
23.1 BLDC基本原理
23.2 控制原理和控制策略
23.3 转矩的产生
23.4 优点和缺点
23.5 转矩脉动
23.6 设计考虑
23.7 BLDC的有限元分析和设计考虑
23.8永久磁铁
23.9BLDC仿真模型
23.1 0无传感器
参考文献
第24章 电动汽车和混合动力汽车用电动机及其控制器的试验
24.1 引言
24.2 电动汽车标准化的现状
24.2.1 电动汽车和标准化[1]
24.2.2 标准化机构在该领域的作用
24.2.3 汽车零部件的标准化
24.2.4 日本的标准化进程[2]
24.3 使用电动机/发电机组的试验程序[3]
24.3.1 电动机
24.3.2 控制器
24.3.3 试验程序的运用
24.3.4 型式试验项目的分析
24.4 采用涡流测功机的试验程序
24.4.1 试验策略
24.4.2 试验程序
24.4.3 关于试验程序的讨论
24.5 采用交流测功器的试验程序[4]
24.5.1 试验策略
24.5.2 试验项目
24.5.3 试验程序
24.6 在车内环境中的电动机和控制器的试验
24.6.1 硬件在环的概念
24.6.2 硬件在环在电动机/控制器试验中的应用
24.6.3 试验说明
24.6.4 试验结果
24.7 总结
参考文献
第五篇 其他汽车应用
第25章 起动发电一体机
25.1 汽车上的ISA子系统
25.2 动力耦合架构
25.2.1 曲轴安装ISA构型
25.2.2 偏置安装ISA系统结构
25.3 ISA系统的功能与性能
25.3.1 技术状况
25.3.2 ISA子系统的功能
25.4 ISA子系统的部件[7]
25.4.1 双电压输出发电机
25.4.2 带12V抽头的36V电池
25.4.3 典型的ISA电气系统
25.4.4 带中性电感的多功能逆变器
25.4.5 电机
25.4.6 逆变器和整流器
25.4.7 DC/DC变换器
25.5 ISA的系统问题
25.5.1 能量存储系统和ISA系统
25.5.2 ISA冷却方式
25.5.3 其他问题
25.6 总结
参考文献
第26章 具有容错功能的汽车用调速电机拖动系统
26.1 引言
26.1.1 可重组控制器
26.2 数字滞环调节
26.2.1 DDHR的电流重构算法
参考文献
第27章 汽车转向系统
27.1 引言
27.2 转向系统
27.2.1 手动转向
27.2.2 液压助力转向
27.2.3 电液助力转向
27.2.4 电动助力转向
27.3 先进转向系统
27.3.1 四轮转向
27.3.2 下一代转向系统
参考文献
第28章 大电流的电机拖动:现代汽车技术的新挑战
28.1 背景
28.2 大电流电机拖动的电磁设计
28.3 多变换器系统的稳定性
28.4 能量转化
28.5 对控制的影响
第29章 电力电子技术在汽车及乘员安全上的应用
29.1 引言
29.2 汽车安全中的电力电子技术
29.2.1 CAN总线在汽车电力电子模块网络上的应用
29.2.2 发动机安全系统
29.2.3 防盗报警系统
29.2.4 自适应巡航控制(ACC)
29.2.5 倒车传感及泊车系统
29.3 电力电子学在乘员安全中的应用
29.3.1 安全带控制系统
29.3.2 电动车窗安全系统
29.3.3 安全气囊
29.3.4 驾驶人辅助系统及疲劳监测
29.4 结论
参考文献
第30章 混合动力汽车的驱动和控制系统
30.1 引言
30.2 控制策略
30.2.1 恒温器式串联控制策略
30.2.2 功率跟随式串联控制策略
30.2.3 并联式内燃机辅助控制策略
30.2.4 并联式电机辅助控制策略
30.2.5 自适应控制策略
30.2.6 模糊控制策略
30.3 电力电子控制系统和控制策略
30.4 当今的混合动力汽车及其控制策略
30.4.1 本田Insight的控制策略
30.4.2 丰田Prius的控制策略
30.5 总结
参考文献
第31章 车用电池技术
31.1 引言
31.1.1 电池技术
31.1.2 当前对汽车电池的要求
31.2 未来汽车电池
31.3 电池与超级电容器的结合
31.4 电池监测与充电控制
31.5 结论
参考文献