您当前的位置:首页 > 大数据:互联网大规模数据挖掘与分布式处理 > 下载地址2
大数据:互联网大规模数据挖掘与分布式处理
- 名 称:大数据:互联网大规模数据挖掘与分布式处理 - 下载地址2
- 类 别:计算机与网络
- 下载地址:[下载地址2]
- 提 取 码:
- 浏览次数:3
新闻评论(共有 0 条评论) |
资料介绍
大数据:互联网大规模数据挖掘与分布式处理
作者:(美) Anand Rajaraman (美) Jeffrey David Ullman 著,王 斌 译
出版时间:2012-9-1
【图书简介】
本书源自作者在斯坦福大学教授多年的“Web挖掘”课程材料,主要关注大数据环境下数据挖掘的实际算法。书中分析了海量数据集数据挖掘常用的算法,介绍了目前Web应用的许多重要话题。主要内容包括:□ 分布式文件系统以及Map-Reduce工具;□ 相似性搜索;□ 数据流处理以及针对易丢失数据等特殊情况的专用处理算法;□ 搜索引擎技术,如谷歌的PageRank;□ 频繁项集挖掘;□ 大规模高维数据集的聚类算法;□ Web应用中的关键问题:广告管理和推荐系统。本书配套网http://infolab.stanford.edu/~ullman/mmds.html上提供英文版初稿以及一些课件和项目作业。
【作者简介】
AnandRajaraman 数据库和Web技术领域权威,创业投资基金Cambrian联合创始人,斯坦福大学计算机科学系助理教授。Rajaraman职业生涯非常成功:1996年创办Junglee公司,两年后该公司被亚马逊以2.5亿美元收购,Rajaraman被聘为亚马逊技术总监,推动亚马逊从一个零售商转型为零售平台;2000年与人合创Cambrian,孵化出几个后来被谷歌收购的公司;2005年创办Kosmix公司并任CEO,该公司2011年被沃尔玛集团收购。Rajaraman生于印度,在斯坦福大学获得计算机科学硕士和博士学位。求学期间与人合著的一篇论文荣列近20年来被引用次数最多的论文之一。博客地址http://anand.typepad.com/datawocky/。Jeffrey DavidUllman 美国国家工程院院士,计算机科学家,斯坦福大学教授。Ullman早年在贝尔实验室工作,之后任教于普林斯顿大学,十年后加入斯坦福大学直至退休,一生的科研、著书和育人成果卓著。他是ACM会员,曾获SIGMOD贡献奖、Knuth奖等多项科研大奖;他是“龙书”《编译原理》、数据库领域权威指南《数据库系统实现》的合著者;麾下多名学生成为了数据库领域的专家,其中最有名的当属谷歌创始人SergeyBrin;本书第一作者也是他的得意弟子。Ullman目前任Gradiance公司CEO。译者简介:王斌 博士,中国科学院计算技术研究所博士生导师。中国科学院信息工程研究所客座研究员。主要研究方向为信息检索、自然语言处理和数据挖掘。《信息检索导论》译者。主持国家973、863、国家自然科学基金、国际合作基金、国家支撑计划等课题20余项,发表学术论文120余篇。现为ACM会员、中国中文信息学会理事、中文信息学会信息检索专委会委员、《中文信息学报》编委、中国计算机学会高级会员及计算机学会中文信息处理专委会委员。自2006年起在中国科学院研究生院(现改名“中国科学院大学”)讲授《现代信息检索》研究生课程,选课人数累计近千人。2010年开始指导研究生,迄今培养博士、硕士研究生30余名。
【本书目录】
第1章 数据挖掘基本概念 1
1.1 数据挖掘的定义 1
1.1.1 统计建模 1
1.1.2 机器学习 1
1.1.3 建模的计算方法 2
1.1.4 数据汇总 2
1.1.5 特征抽取 3
1.2 数据挖掘的统计限制 4
1.2.1 整体情报预警 4
1.2.2 邦弗朗尼原理 4
1.2.3 邦弗朗尼原理的一个例子 5
1.2.4 习题 6
1.3 相关知识 6
1.3.1 词语在文档中的重要性 6
1.3.2 哈希函数 7
1.3.3 索引 8
1.3.4 二级存储器 10
1.3.5 自然对数的底e 10
1.3.6 幂定律 11
1.3.7 习题 12
1.4 本书概要 13
1.5 小结 14
1.6 参考文献 14
第2章 大规模文件系统及Map-Reduce 16
2.1 分布式文件系统 16
2.1.1 计算节点的物理结构 17
2.1.2 大规模文件系统的结构 18
2.2 Map-Reduce 18
2.2.1 Map任务 19
2.2.2 分组和聚合 20
2.2.3 Reduce任务 20
2.2.4 组合器 21
作者:(美) Anand Rajaraman (美) Jeffrey David Ullman 著,王 斌 译
出版时间:2012-9-1
【图书简介】
本书源自作者在斯坦福大学教授多年的“Web挖掘”课程材料,主要关注大数据环境下数据挖掘的实际算法。书中分析了海量数据集数据挖掘常用的算法,介绍了目前Web应用的许多重要话题。主要内容包括:□ 分布式文件系统以及Map-Reduce工具;□ 相似性搜索;□ 数据流处理以及针对易丢失数据等特殊情况的专用处理算法;□ 搜索引擎技术,如谷歌的PageRank;□ 频繁项集挖掘;□ 大规模高维数据集的聚类算法;□ Web应用中的关键问题:广告管理和推荐系统。本书配套网http://infolab.stanford.edu/~ullman/mmds.html上提供英文版初稿以及一些课件和项目作业。
【作者简介】
AnandRajaraman 数据库和Web技术领域权威,创业投资基金Cambrian联合创始人,斯坦福大学计算机科学系助理教授。Rajaraman职业生涯非常成功:1996年创办Junglee公司,两年后该公司被亚马逊以2.5亿美元收购,Rajaraman被聘为亚马逊技术总监,推动亚马逊从一个零售商转型为零售平台;2000年与人合创Cambrian,孵化出几个后来被谷歌收购的公司;2005年创办Kosmix公司并任CEO,该公司2011年被沃尔玛集团收购。Rajaraman生于印度,在斯坦福大学获得计算机科学硕士和博士学位。求学期间与人合著的一篇论文荣列近20年来被引用次数最多的论文之一。博客地址http://anand.typepad.com/datawocky/。Jeffrey DavidUllman 美国国家工程院院士,计算机科学家,斯坦福大学教授。Ullman早年在贝尔实验室工作,之后任教于普林斯顿大学,十年后加入斯坦福大学直至退休,一生的科研、著书和育人成果卓著。他是ACM会员,曾获SIGMOD贡献奖、Knuth奖等多项科研大奖;他是“龙书”《编译原理》、数据库领域权威指南《数据库系统实现》的合著者;麾下多名学生成为了数据库领域的专家,其中最有名的当属谷歌创始人SergeyBrin;本书第一作者也是他的得意弟子。Ullman目前任Gradiance公司CEO。译者简介:王斌 博士,中国科学院计算技术研究所博士生导师。中国科学院信息工程研究所客座研究员。主要研究方向为信息检索、自然语言处理和数据挖掘。《信息检索导论》译者。主持国家973、863、国家自然科学基金、国际合作基金、国家支撑计划等课题20余项,发表学术论文120余篇。现为ACM会员、中国中文信息学会理事、中文信息学会信息检索专委会委员、《中文信息学报》编委、中国计算机学会高级会员及计算机学会中文信息处理专委会委员。自2006年起在中国科学院研究生院(现改名“中国科学院大学”)讲授《现代信息检索》研究生课程,选课人数累计近千人。2010年开始指导研究生,迄今培养博士、硕士研究生30余名。
【本书目录】
第1章 数据挖掘基本概念 1
1.1 数据挖掘的定义 1
1.1.1 统计建模 1
1.1.2 机器学习 1
1.1.3 建模的计算方法 2
1.1.4 数据汇总 2
1.1.5 特征抽取 3
1.2 数据挖掘的统计限制 4
1.2.1 整体情报预警 4
1.2.2 邦弗朗尼原理 4
1.2.3 邦弗朗尼原理的一个例子 5
1.2.4 习题 6
1.3 相关知识 6
1.3.1 词语在文档中的重要性 6
1.3.2 哈希函数 7
1.3.3 索引 8
1.3.4 二级存储器 10
1.3.5 自然对数的底e 10
1.3.6 幂定律 11
1.3.7 习题 12
1.4 本书概要 13
1.5 小结 14
1.6 参考文献 14
第2章 大规模文件系统及Map-Reduce 16
2.1 分布式文件系统 16
2.1.1 计算节点的物理结构 17
2.1.2 大规模文件系统的结构 18
2.2 Map-Reduce 18
2.2.1 Map任务 19
2.2.2 分组和聚合 20
2.2.3 Reduce任务 20
2.2.4 组合器 21
下一篇: 大数据的冲击
上一篇: Splunk的大数据报告和实施(英文版)