您当前的位置:首页 > 社交网站的数据挖掘与分析 > 下载地址2
社交网站的数据挖掘与分析
- 名 称:社交网站的数据挖掘与分析 - 下载地址2
- 类 别:计算机与网络
- 下载地址:[下载地址2]
- 提 取 码:
- 浏览次数:3
新闻评论(共有 0 条评论) |
资料介绍
社交网站的数据挖掘与分析
作 者: (美)罗塞尔 著,师蓉 译
出版时间:2012
内容简介
Facebook、Twitter和LinkedIn产生了大量宝贵的社交数据,但是怎样才能找出谁通过社交媒介正在进行联系?他们在讨论些什么?或者他们在哪儿?本书简洁而且具有可操作性,它将揭示如何回答这些问题甚至更多的问题。你将学到如何组合社交网络数据、分析技术,如何通过可视化帮助你找到你一直在社交世界中寻找的内容,以及你闻所未闻的有用信息。本书每章都介绍了在社交网络的不同领域挖掘数据的技术,这些领域包括博客和电子邮件。你所需要具备的就是一定的编程经验和学习基本的Python工具的意愿。通过本书,你将 . 获得对社交网络世界的直观认识 .使用GitHub上灵活的脚本来获取从诸如Twitter、Facebook和LinkedIn等社交网络API中的数据 . 学习如何应用便捷的Python工具来交叉分析你所收集的数据 . 通过XFN探讨基于微格式的社交联系 . 应用诸如TF-IDF、余弦相似性、搭配分析、文档摘要、派系检测之类的先进挖掘技术 . 通过基于HTML 5和JavaScript工具包的网络技术建立交互式可视化
目录
前言
第1章 绪论:Twitter 数据的处理
Python 开发工具的安装
Twitter 数据的收集和处理
小结
第2章 微格式:语义标记和常识碰撞
XFN 和朋友
使用XFN 来探讨社交关系
地理坐标:兴趣爱好的共同主线
(以健康的名义)对菜谱进行交叉分析
对餐厅评论的搜集
小结
第3章 邮箱:虽然老套却很好用
mbox:Unix 的入门级邮箱
mbox+CouchDB= 随意的Email 分析
将对话线程化到一起
使用SIMILE Timeline 将邮件“事件”可视化
分析你自己的邮件数据
小结
第4章 Twitter :朋友、关注者和Setwise 操作
REST 风格的和OAuth-Cladded API
干练而中肯的数据采集器
友谊图的构建
小结
第5章 Twitter:tweet ,所有的tweet ,只有tweet
笔PK 剑:和tweet PK 机枪
对tweet 的分析(每次一个实体)
并置潜在的社交网站(或#JustinBieber VS #TeaParty)
对大量tweet 的可视化
小结
第6章 LinkedIn :为了乐趣(和利润?)将职业网络聚类
聚类的动机
按职位将联系人聚类
获取补充个人信息
从地理上聚类网络
小结
第7章 Google Buzz:TF-IDF 、余弦相似性和搭配194
Buzz=Twitter+ 博客
使用NLTK 处理数据
文本挖掘的基本原则
查找相似文档
在二元语法中发Buzz
利用Gmail
在中断之前试着创建一个搜索引擎……
小结
第8章 博客及其他:自然语言处理(等)
NLP :帕累托式介绍
使用NLTK 的典型NLP 管线
使用NLTK 检测博客中的句子
对文件的总结
以实体为中心的分析:对数据的深层了解
小结256
第9章 Facebook :一体化的奇迹
利用社交网络数据
对Facebook 数据的可视化
小结
第10章 语义网:简短的讨论
发展中的变革
人不可能只靠事实生活
期望
作 者: (美)罗塞尔 著,师蓉 译
出版时间:2012
内容简介
Facebook、Twitter和LinkedIn产生了大量宝贵的社交数据,但是怎样才能找出谁通过社交媒介正在进行联系?他们在讨论些什么?或者他们在哪儿?本书简洁而且具有可操作性,它将揭示如何回答这些问题甚至更多的问题。你将学到如何组合社交网络数据、分析技术,如何通过可视化帮助你找到你一直在社交世界中寻找的内容,以及你闻所未闻的有用信息。本书每章都介绍了在社交网络的不同领域挖掘数据的技术,这些领域包括博客和电子邮件。你所需要具备的就是一定的编程经验和学习基本的Python工具的意愿。通过本书,你将 . 获得对社交网络世界的直观认识 .使用GitHub上灵活的脚本来获取从诸如Twitter、Facebook和LinkedIn等社交网络API中的数据 . 学习如何应用便捷的Python工具来交叉分析你所收集的数据 . 通过XFN探讨基于微格式的社交联系 . 应用诸如TF-IDF、余弦相似性、搭配分析、文档摘要、派系检测之类的先进挖掘技术 . 通过基于HTML 5和JavaScript工具包的网络技术建立交互式可视化
目录
前言
第1章 绪论:Twitter 数据的处理
Python 开发工具的安装
Twitter 数据的收集和处理
小结
第2章 微格式:语义标记和常识碰撞
XFN 和朋友
使用XFN 来探讨社交关系
地理坐标:兴趣爱好的共同主线
(以健康的名义)对菜谱进行交叉分析
对餐厅评论的搜集
小结
第3章 邮箱:虽然老套却很好用
mbox:Unix 的入门级邮箱
mbox+CouchDB= 随意的Email 分析
将对话线程化到一起
使用SIMILE Timeline 将邮件“事件”可视化
分析你自己的邮件数据
小结
第4章 Twitter :朋友、关注者和Setwise 操作
REST 风格的和OAuth-Cladded API
干练而中肯的数据采集器
友谊图的构建
小结
第5章 Twitter:tweet ,所有的tweet ,只有tweet
笔PK 剑:和tweet PK 机枪
对tweet 的分析(每次一个实体)
并置潜在的社交网站(或#JustinBieber VS #TeaParty)
对大量tweet 的可视化
小结
第6章 LinkedIn :为了乐趣(和利润?)将职业网络聚类
聚类的动机
按职位将联系人聚类
获取补充个人信息
从地理上聚类网络
小结
第7章 Google Buzz:TF-IDF 、余弦相似性和搭配194
Buzz=Twitter+ 博客
使用NLTK 处理数据
文本挖掘的基本原则
查找相似文档
在二元语法中发Buzz
利用Gmail
在中断之前试着创建一个搜索引擎……
小结
第8章 博客及其他:自然语言处理(等)
NLP :帕累托式介绍
使用NLTK 的典型NLP 管线
使用NLTK 检测博客中的句子
对文件的总结
以实体为中心的分析:对数据的深层了解
小结256
第9章 Facebook :一体化的奇迹
利用社交网络数据
对Facebook 数据的可视化
小结
第10章 语义网:简短的讨论
发展中的变革
人不可能只靠事实生活
期望
下一篇: 数据仓库与数据挖掘工程实例
上一篇: 数据挖掘算法及在视频分析中的应用