网站地图 | Tags | 热门标准 | 最新标准 | 订阅
您当前的位置:首页 > 迁移学习:理论与实践 > 下载地址1

迁移学习:理论与实践

  • 名  称:迁移学习:理论与实践 - 下载地址1
  • 类  别:计算机与网络
  • 下载地址:[下载地址1]
  • 提 取 码
  • 浏览次数:3
下载帮助: 发表评论 加入收藏夹 错误报告目录
发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表
新闻评论(共有 0 条评论)

资料介绍

迁移学习:理论与实践
作者:邵浩 著
出版时间:2013年版
内容简介
  《迁移学习:理论与实践》着眼于管理实际中的资源再利用,对数据挖掘领域最前沿的迁移学习进行了详细阐述,并着重介绍了应用最为广泛的分类学习,将最前沿的研究进行了归纳总结,并通过实际算法分析,将领域内的最新进展提供给读者,使读者能够使用迁移学习的工具构建模型并应用到实际问题。《迁移学习:理论与实践》主要读者对象为具有管理和计算机背景并在数据挖掘领域有初步研究的学者。
目录
Preface
Chapter 1 Introduction
1.1 Background and Motivation
1.2 COntributiong
1.2.1 Extended MDLP for Transfer Learning
1.2.2 Compact Coding for Hyperplane Classifiers in Transfer Learning
1.2.3 Transfer Active Learning
1.2.4 Gaussian Process for Transfer Learning
1.3 Book OverviewChapter 2 Literature Review and Preliminaries for MDLP
2.1 Transfer Learning
2.2 Active Learning and Transfer Active Learning
2.3 Preljminaries for MD[.PChapter 3 Extended MDL Principle for Feature-based Transfer
Learning
3.1 IntroductiOn
3.2 Problem Statement
3.3 Preliminaries for Encoding
3.3.1 Theoretical Foundation of the EMDLP
3.3.2 Adaptation of the EMDLP to Our Problem
3.4 Supervised Inductive Transfer Learning Algorithm
3.4.1 EMDLP with Incremental Search
3.4.2 EMDLP with Hill Climbing
3.5 Experiments
3.5.1 Experimental Settings
3.5.2 Experimental Results on Synthetic Data Sets
3.5.3 Experimental Results on Real Data Sets
3.6 SummaryChapter 4 Compact Coding for Hyperplane Classifiers in a
Heterogeneous Environment
4.1 Introduction
4.2 Problem Setting
4.3 Compact Coding for Hyperplane Classifiers in
Heterogeneous Environment
4.3.1 Macro Level:Arrange Related Tasks
4.3.2 Micro Level Evaluation
4.3.3 The Transfer Learning Algorithm
4.4 Experiments
4.4.1 Experimental Setting
4.4.2 Experimental Results
4.5 SummaryChapter 5 Adaptive Transfer Learning with Query by
Committee
5.1 IntroductiOn
5.2 Problem Setting and Preliminaries
5.3 Probabilistic Framework for ALTL
5.4 The ALTL Algorithm and Analysis
5.4.1 The Procedure of ALTL
5.4.2 Termination Condition and Analysis
5.5 Experiments
5.5.1 Experimental Setting
5.5.2 Results on Synthetic Data Sets
5.5.3 Results on Real Data Sets
5.6 SummaryChapter 6 Gaussian Process for Transfer Learning through
Minimum Encoding
6.1 IntrOduction
6.2 Gaussian Process for Classification
6.3 The GPTL Algorithm
6.3.1 Arrange Related Tasks
6.3.2 The Instance Level Similarities
6.4 Experiments
6.5 SummaryChapter 7 Concluding Comments
Appendix A Target Concepts in Chapter 3
Bibliography

下载排行 | 下载帮助 | 下载声明 | 信息反馈 | 网站地图  360book | 联系我们谢谢