您当前的位置:首页 > 岩土材料质量分布与变形之间的相互作用原理 英文版 > 下载地址2
岩土材料质量分布与变形之间的相互作用原理 英文版
- 名 称:岩土材料质量分布与变形之间的相互作用原理 英文版 - 下载地址2
- 类 别:建筑书籍
- 下载地址:[下载地址2]
- 提 取 码:
- 浏览次数:3
新闻评论(共有 0 条评论) |
资料介绍
岩土材料质量分布与变形之间的相互作用原理 英文版
作者:Jingtao Wang
出版时间:2010年版
内容简介
Rock and soil are the major constituent materials of the lithosphere of the earth. They are also the most widely used engineering materials. Rock and soil exhibit some remarkable characteristics of deformation and strength behavior, such as the pressure sensitivity(or pressure dependency), shear dilatancy, dependency of stress path etc.The two phenomena of pressure sensitivity and shear dilatancy have long been known by people. However, their origin of generation is not explained rationally yet.
目录
Preface
Chapter 1 Introduction to Continuum Mechanics
1.1 The definition of a continuum
1.2 Deformation
1.3 Stress
1.4 Velocity fields
1.5 The classical conservation laws and field equations
1.5.1 Lagrange and Euler descriptions of the motion of a continuum
1.5.2 The equation of continuity
1.5.3 The equations of motion
1.5.4 Moment of momentum
Chapter 2 Fundamentals of Thermodynamics
2.1 Introduction
2.2 Basic concepts of thermodynamics
2.3 Temperature and the zeroth law of thermodynamics
2.4 Energy
2.5 The first law of thermodynamics
2.6 The second law of thermodynamics
2.7 Reversible and irreversible processes
2.8 Entropy and Clausius-Duhem inequality
2.9 Internal variables and accompanying equilibrium state
Chapter 3 Fundamental Characteristics of Deformation Behavior for Geotechnical Materials
3.1 Introduction
3.2 Pressure sensitivity
3.3 Shear dilatancy
3.4 Dependency of stress path
Chapter 4 Constitutive Modeling for Geotechnical Materials
4.1 Introduction
4.2 The plastic potential theory
4.3 The approach based on the thermodynamics of irreversible processes
4.4 The critical state and critical state line
4.4.1 Critical state
4.4.2 Critical state line
Chapter 5 The Principleof Interaction between Plastic Volumetric and Shear Strains
5.1 Background
5.2 The principle of interaction between plastic volumetric and shear strains
5.3 Effects of the plastic shear strain on plastic volumetric strains
5.4 Effects of the plastic volumetric strain on plastic shear strains
5.5 The physical meaning of the principle of interaction
Chapter 6 The Mechanism of Generation of Dependency of Stress Path and Critical State Line
6.1 The dependency of stress path
6.2 The rotational hardening
6.3 The critical state line
Chapter 7 The Constitutive Equations for Geotechnical Materials
7.1 The objective of constitutive modeling
7.2 Quantitative representation of the interaction between plastic volumetric and shear strains
7.3 Thermodynamic variables and state potential
7.4 Dissipation functional
7.5 The constitutive equations for geotechnical materials
Chapter 8 Damages of Engineering and Geotechnical Materials
8.1 The mechanism of damage of metals and some engineering materials
8.2 The damage of geotechnical materials
8.3 The description of damage evolution
Chapter 9 The Numerical Method of Constitutive Modeling for Geotechnical Materials
9.1 Introduction
9.2 The numerical method of constitutive modeling
9.3 Plasticity-based models for clay and sand under different stress paths
9.4 Concluding remarks
References
作者:Jingtao Wang
出版时间:2010年版
内容简介
Rock and soil are the major constituent materials of the lithosphere of the earth. They are also the most widely used engineering materials. Rock and soil exhibit some remarkable characteristics of deformation and strength behavior, such as the pressure sensitivity(or pressure dependency), shear dilatancy, dependency of stress path etc.The two phenomena of pressure sensitivity and shear dilatancy have long been known by people. However, their origin of generation is not explained rationally yet.
目录
Preface
Chapter 1 Introduction to Continuum Mechanics
1.1 The definition of a continuum
1.2 Deformation
1.3 Stress
1.4 Velocity fields
1.5 The classical conservation laws and field equations
1.5.1 Lagrange and Euler descriptions of the motion of a continuum
1.5.2 The equation of continuity
1.5.3 The equations of motion
1.5.4 Moment of momentum
Chapter 2 Fundamentals of Thermodynamics
2.1 Introduction
2.2 Basic concepts of thermodynamics
2.3 Temperature and the zeroth law of thermodynamics
2.4 Energy
2.5 The first law of thermodynamics
2.6 The second law of thermodynamics
2.7 Reversible and irreversible processes
2.8 Entropy and Clausius-Duhem inequality
2.9 Internal variables and accompanying equilibrium state
Chapter 3 Fundamental Characteristics of Deformation Behavior for Geotechnical Materials
3.1 Introduction
3.2 Pressure sensitivity
3.3 Shear dilatancy
3.4 Dependency of stress path
Chapter 4 Constitutive Modeling for Geotechnical Materials
4.1 Introduction
4.2 The plastic potential theory
4.3 The approach based on the thermodynamics of irreversible processes
4.4 The critical state and critical state line
4.4.1 Critical state
4.4.2 Critical state line
Chapter 5 The Principleof Interaction between Plastic Volumetric and Shear Strains
5.1 Background
5.2 The principle of interaction between plastic volumetric and shear strains
5.3 Effects of the plastic shear strain on plastic volumetric strains
5.4 Effects of the plastic volumetric strain on plastic shear strains
5.5 The physical meaning of the principle of interaction
Chapter 6 The Mechanism of Generation of Dependency of Stress Path and Critical State Line
6.1 The dependency of stress path
6.2 The rotational hardening
6.3 The critical state line
Chapter 7 The Constitutive Equations for Geotechnical Materials
7.1 The objective of constitutive modeling
7.2 Quantitative representation of the interaction between plastic volumetric and shear strains
7.3 Thermodynamic variables and state potential
7.4 Dissipation functional
7.5 The constitutive equations for geotechnical materials
Chapter 8 Damages of Engineering and Geotechnical Materials
8.1 The mechanism of damage of metals and some engineering materials
8.2 The damage of geotechnical materials
8.3 The description of damage evolution
Chapter 9 The Numerical Method of Constitutive Modeling for Geotechnical Materials
9.1 Introduction
9.2 The numerical method of constitutive modeling
9.3 Plasticity-based models for clay and sand under different stress paths
9.4 Concluding remarks
References
下一篇: 既有居住建筑绿色改造技术指南
上一篇: 海绵城市 景观设计中的雨洪管理